Aromātai
-\frac{129}{40}=-3.225
Tauwehe
-\frac{129}{40} = -3\frac{9}{40} = -3.225
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\times 2+1}{2\times 12}-\left(12\left(\frac{1}{3}-0\times 3\right)-\frac{3}{20}\right)
Tuhia te \frac{\frac{7\times 2+1}{2}}{12} hei hautanga kotahi.
\frac{14+1}{2\times 12}-\left(12\left(\frac{1}{3}-0\times 3\right)-\frac{3}{20}\right)
Whakareatia te 7 ki te 2, ka 14.
\frac{15}{2\times 12}-\left(12\left(\frac{1}{3}-0\times 3\right)-\frac{3}{20}\right)
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{24}-\left(12\left(\frac{1}{3}-0\times 3\right)-\frac{3}{20}\right)
Whakareatia te 2 ki te 12, ka 24.
\frac{5}{8}-\left(12\left(\frac{1}{3}-0\times 3\right)-\frac{3}{20}\right)
Whakahekea te hautanga \frac{15}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{5}{8}-\left(12\left(\frac{1}{3}-0\right)-\frac{3}{20}\right)
Whakareatia te 0 ki te 3, ka 0.
\frac{5}{8}-\left(12\times \frac{1}{3}-\frac{3}{20}\right)
Tangohia te 0 i te \frac{1}{3}, ka \frac{1}{3}.
\frac{5}{8}-\left(\frac{12}{3}-\frac{3}{20}\right)
Whakareatia te 12 ki te \frac{1}{3}, ka \frac{12}{3}.
\frac{5}{8}-\left(4-\frac{3}{20}\right)
Whakawehea te 12 ki te 3, kia riro ko 4.
\frac{5}{8}-\left(\frac{80}{20}-\frac{3}{20}\right)
Me tahuri te 4 ki te hautau \frac{80}{20}.
\frac{5}{8}-\frac{80-3}{20}
Tā te mea he rite te tauraro o \frac{80}{20} me \frac{3}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{5}{8}-\frac{77}{20}
Tangohia te 3 i te 80, ka 77.
\frac{25}{40}-\frac{154}{40}
Ko te maha noa iti rawa atu o 8 me 20 ko 40. Me tahuri \frac{5}{8} me \frac{77}{20} ki te hautau me te tautūnga 40.
\frac{25-154}{40}
Tā te mea he rite te tauraro o \frac{25}{40} me \frac{154}{40}, me tango rāua mā te tango i ō raua taurunga.
-\frac{129}{40}
Tangohia te 154 i te 25, ka -129.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}