Aromātai
6
Tauwehe
2\times 3
Tohaina
Kua tāruatia ki te papatopenga
\frac{7\times 2+1}{2\times 1.2}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Tuhia te \frac{\frac{7\times 2+1}{2}}{1.2} hei hautanga kotahi.
\frac{14+1}{2\times 1.2}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Whakareatia te 7 ki te 2, ka 14.
\frac{15}{2\times 1.2}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Tāpirihia te 14 ki te 1, ka 15.
\frac{15}{2.4}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Whakareatia te 2 ki te 1.2, ka 2.4.
\frac{150}{24}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Whakarohaina te \frac{15}{2.4} mā te whakarea i te taurunga me te tauraro ki te 10.
\frac{25}{4}-\left(12\left(\frac{1}{3}-0.3\right)-\frac{3}{20}\right)
Whakahekea te hautanga \frac{150}{24} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{25}{4}-\left(12\left(\frac{1}{3}-\frac{3}{10}\right)-\frac{3}{20}\right)
Me tahuri ki tau ā-ira 0.3 ki te hautau \frac{3}{10}.
\frac{25}{4}-\left(12\left(\frac{10}{30}-\frac{9}{30}\right)-\frac{3}{20}\right)
Ko te maha noa iti rawa atu o 3 me 10 ko 30. Me tahuri \frac{1}{3} me \frac{3}{10} ki te hautau me te tautūnga 30.
\frac{25}{4}-\left(12\times \frac{10-9}{30}-\frac{3}{20}\right)
Tā te mea he rite te tauraro o \frac{10}{30} me \frac{9}{30}, me tango rāua mā te tango i ō raua taurunga.
\frac{25}{4}-\left(12\times \frac{1}{30}-\frac{3}{20}\right)
Tangohia te 9 i te 10, ka 1.
\frac{25}{4}-\left(\frac{12}{30}-\frac{3}{20}\right)
Whakareatia te 12 ki te \frac{1}{30}, ka \frac{12}{30}.
\frac{25}{4}-\left(\frac{2}{5}-\frac{3}{20}\right)
Whakahekea te hautanga \frac{12}{30} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{25}{4}-\left(\frac{8}{20}-\frac{3}{20}\right)
Ko te maha noa iti rawa atu o 5 me 20 ko 20. Me tahuri \frac{2}{5} me \frac{3}{20} ki te hautau me te tautūnga 20.
\frac{25}{4}-\frac{8-3}{20}
Tā te mea he rite te tauraro o \frac{8}{20} me \frac{3}{20}, me tango rāua mā te tango i ō raua taurunga.
\frac{25}{4}-\frac{5}{20}
Tangohia te 3 i te 8, ka 5.
\frac{25}{4}-\frac{1}{4}
Whakahekea te hautanga \frac{5}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{25-1}{4}
Tā te mea he rite te tauraro o \frac{25}{4} me \frac{1}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{24}{4}
Tangohia te 1 i te 25, ka 24.
6
Whakawehea te 24 ki te 4, kia riro ko 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}