Whakaoti mō x
x=\frac{1}{5}=0.2
Graph
Tohaina
Kua tāruatia ki te papatopenga
\frac{\left(7\times 2+1\right)\times 2}{2\left(4\times 2+1\right)}=\frac{x}{\frac{3}{25}}
Whakawehe \frac{7\times 2+1}{2} ki te \frac{4\times 2+1}{2} mā te whakarea \frac{7\times 2+1}{2} ki te tau huripoki o \frac{4\times 2+1}{2}.
\frac{1+2\times 7}{1+2\times 4}=\frac{x}{\frac{3}{25}}
Me whakakore tahi te 2 i te taurunga me te tauraro.
\frac{1+14}{1+2\times 4}=\frac{x}{\frac{3}{25}}
Whakareatia te 2 ki te 7, ka 14.
\frac{15}{1+2\times 4}=\frac{x}{\frac{3}{25}}
Tāpirihia te 1 ki te 14, ka 15.
\frac{15}{1+8}=\frac{x}{\frac{3}{25}}
Whakareatia te 2 ki te 4, ka 8.
\frac{15}{9}=\frac{x}{\frac{3}{25}}
Tāpirihia te 1 ki te 8, ka 9.
\frac{5}{3}=\frac{x}{\frac{3}{25}}
Whakahekea te hautanga \frac{15}{9} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
\frac{x}{\frac{3}{25}}=\frac{5}{3}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x=\frac{5}{3}\times \frac{3}{25}
Me whakarea ngā taha e rua ki te \frac{3}{25}.
x=\frac{5\times 3}{3\times 25}
Me whakarea te \frac{5}{3} ki te \frac{3}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
x=\frac{5}{25}
Me whakakore tahi te 3 i te taurunga me te tauraro.
x=\frac{1}{5}
Whakahekea te hautanga \frac{5}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}