Aromātai
-25
Tauwehe
-25
Tohaina
Kua tāruatia ki te papatopenga
\frac{\frac{84+1}{12}\times 18}{-5.1}
Whakareatia te 7 ki te 12, ka 84.
\frac{\frac{85}{12}\times 18}{-5.1}
Tāpirihia te 84 ki te 1, ka 85.
\frac{\frac{85\times 18}{12}}{-5.1}
Tuhia te \frac{85}{12}\times 18 hei hautanga kotahi.
\frac{\frac{1530}{12}}{-5.1}
Whakareatia te 85 ki te 18, ka 1530.
\frac{\frac{255}{2}}{-5.1}
Whakahekea te hautanga \frac{1530}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
\frac{255}{2\left(-5.1\right)}
Tuhia te \frac{\frac{255}{2}}{-5.1} hei hautanga kotahi.
\frac{255}{-10.2}
Whakareatia te 2 ki te -5.1, ka -10.2.
\frac{2550}{-102}
Whakarohaina te \frac{255}{-10.2} mā te whakarea i te taurunga me te tauraro ki te 10.
-25
Whakawehea te 2550 ki te -102, kia riro ko -25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}