Aromātai
-\frac{249}{14}\approx -17.785714286
Tauwehe
-\frac{249}{14} = -17\frac{11}{14} = -17.785714285714285
Tohaina
Kua tāruatia ki te papatopenga
\frac{7}{2}-\left(21+\frac{\frac{4}{7}\times \frac{25}{8}}{\left(\frac{5}{2}\right)^{2}}\right)
Tāpirihia te 2 ki te 5, ka 7.
\frac{7}{2}-\left(21+\frac{\frac{4\times 25}{7\times 8}}{\left(\frac{5}{2}\right)^{2}}\right)
Me whakarea te \frac{4}{7} ki te \frac{25}{8} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{2}-\left(21+\frac{\frac{100}{56}}{\left(\frac{5}{2}\right)^{2}}\right)
Mahia ngā whakarea i roto i te hautanga \frac{4\times 25}{7\times 8}.
\frac{7}{2}-\left(21+\frac{\frac{25}{14}}{\left(\frac{5}{2}\right)^{2}}\right)
Whakahekea te hautanga \frac{100}{56} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
\frac{7}{2}-\left(21+\frac{\frac{25}{14}}{\frac{25}{4}}\right)
Tātaihia te \frac{5}{2} mā te pū o 2, kia riro ko \frac{25}{4}.
\frac{7}{2}-\left(21+\frac{25}{14}\times \frac{4}{25}\right)
Whakawehe \frac{25}{14} ki te \frac{25}{4} mā te whakarea \frac{25}{14} ki te tau huripoki o \frac{25}{4}.
\frac{7}{2}-\left(21+\frac{25\times 4}{14\times 25}\right)
Me whakarea te \frac{25}{14} ki te \frac{4}{25} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{7}{2}-\left(21+\frac{4}{14}\right)
Me whakakore tahi te 25 i te taurunga me te tauraro.
\frac{7}{2}-\left(21+\frac{2}{7}\right)
Whakahekea te hautanga \frac{4}{14} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{7}{2}-\left(\frac{147}{7}+\frac{2}{7}\right)
Me tahuri te 21 ki te hautau \frac{147}{7}.
\frac{7}{2}-\frac{147+2}{7}
Tā te mea he rite te tauraro o \frac{147}{7} me \frac{2}{7}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{7}{2}-\frac{149}{7}
Tāpirihia te 147 ki te 2, ka 149.
\frac{49}{14}-\frac{298}{14}
Ko te maha noa iti rawa atu o 2 me 7 ko 14. Me tahuri \frac{7}{2} me \frac{149}{7} ki te hautau me te tautūnga 14.
\frac{49-298}{14}
Tā te mea he rite te tauraro o \frac{49}{14} me \frac{298}{14}, me tango rāua mā te tango i ō raua taurunga.
-\frac{249}{14}
Tangohia te 298 i te 49, ka -249.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}