Whakaoti mō x
x=-49
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\times 7^{2}+6x=\frac{24^{4}}{12^{4}}\times 2^{-2}\times 2^{0}x
Whakareatia ngā taha e rua o te whārite ki te 2.
2\times 49+6x=\frac{24^{4}}{12^{4}}\times 2^{-2}\times 2^{0}x
Tātaihia te 7 mā te pū o 2, kia riro ko 49.
98+6x=\frac{24^{4}}{12^{4}}\times 2^{-2}\times 2^{0}x
Whakareatia te 2 ki te 49, ka 98.
98+6x=\frac{24^{4}}{12^{4}}\times 2^{-2}x
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te -2 me te 0 kia riro ai te -2.
98+6x=\frac{331776}{12^{4}}\times 2^{-2}x
Tātaihia te 24 mā te pū o 4, kia riro ko 331776.
98+6x=\frac{331776}{20736}\times 2^{-2}x
Tātaihia te 12 mā te pū o 4, kia riro ko 20736.
98+6x=16\times 2^{-2}x
Whakawehea te 331776 ki te 20736, kia riro ko 16.
98+6x=16\times \frac{1}{4}x
Tātaihia te 2 mā te pū o -2, kia riro ko \frac{1}{4}.
98+6x=4x
Whakareatia te 16 ki te \frac{1}{4}, ka 4.
98+6x-4x=0
Tangohia te 4x mai i ngā taha e rua.
98+2x=0
Pahekotia te 6x me -4x, ka 2x.
2x=-98
Tangohia te 98 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=\frac{-98}{2}
Whakawehea ngā taha e rua ki te 2.
x=-49
Whakawehea te -98 ki te 2, kia riro ko -49.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}