Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

15x^{2}-5x=7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
15x^{2}-5x-7=0
Tangohia te 7 mai i ngā taha e rua.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 15\left(-7\right)}}{2\times 15}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 15 mō a, -5 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 15\left(-7\right)}}{2\times 15}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-60\left(-7\right)}}{2\times 15}
Whakareatia -4 ki te 15.
x=\frac{-\left(-5\right)±\sqrt{25+420}}{2\times 15}
Whakareatia -60 ki te -7.
x=\frac{-\left(-5\right)±\sqrt{445}}{2\times 15}
Tāpiri 25 ki te 420.
x=\frac{5±\sqrt{445}}{2\times 15}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{445}}{30}
Whakareatia 2 ki te 15.
x=\frac{\sqrt{445}+5}{30}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{445}}{30} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{445}.
x=\frac{\sqrt{445}}{30}+\frac{1}{6}
Whakawehe 5+\sqrt{445} ki te 30.
x=\frac{5-\sqrt{445}}{30}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{445}}{30} ina he tango te ±. Tango \sqrt{445} mai i 5.
x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Whakawehe 5-\sqrt{445} ki te 30.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Kua oti te whārite te whakatau.
15x^{2}-5x=7
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\frac{15x^{2}-5x}{15}=\frac{7}{15}
Whakawehea ngā taha e rua ki te 15.
x^{2}+\left(-\frac{5}{15}\right)x=\frac{7}{15}
Mā te whakawehe ki te 15 ka wetekia te whakareanga ki te 15.
x^{2}-\frac{1}{3}x=\frac{7}{15}
Whakahekea te hautanga \frac{-5}{15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{7}{15}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{7}{15}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{89}{180}
Tāpiri \frac{7}{15} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{6}\right)^{2}=\frac{89}{180}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{89}{180}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{\sqrt{445}}{30} x-\frac{1}{6}=-\frac{\sqrt{445}}{30}
Whakarūnātia.
x=\frac{\sqrt{445}}{30}+\frac{1}{6} x=-\frac{\sqrt{445}}{30}+\frac{1}{6}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.