Manatoko
teka
Tohaina
Kua tāruatia ki te papatopenga
7=\frac{140+119+36}{10+7+3}
Whakareatia te 14 ki te 10, ka 140. Whakareatia te 17 ki te 7, ka 119. Whakareatia te 12 ki te 3, ka 36.
7=\frac{259+36}{10+7+3}
Tāpirihia te 140 ki te 119, ka 259.
7=\frac{295}{10+7+3}
Tāpirihia te 259 ki te 36, ka 295.
7=\frac{295}{17+3}
Tāpirihia te 10 ki te 7, ka 17.
7=\frac{295}{20}
Tāpirihia te 17 ki te 3, ka 20.
7=\frac{59}{4}
Whakahekea te hautanga \frac{295}{20} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
\frac{28}{4}=\frac{59}{4}
Me tahuri te 7 ki te hautau \frac{28}{4}.
\text{false}
Whakatauritea te \frac{28}{4} me te \frac{59}{4}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}