Aromātai
\frac{25}{3}\approx 8.333333333
Tauwehe
\frac{5 ^ {2}}{3} = 8\frac{1}{3} = 8.333333333333334
Tohaina
Kua tāruatia ki te papatopenga
7+14+\frac{-3}{2!}\times 4+\frac{-5}{3!}\times 2^{3}
Whakareatia te 7 ki te 2, ka 14.
21+\frac{-3}{2!}\times 4+\frac{-5}{3!}\times 2^{3}
Tāpirihia te 7 ki te 14, ka 21.
21+\frac{-3}{2}\times 4+\frac{-5}{3!}\times 2^{3}
Ko te huarea o 2 ko 2.
21-\frac{3}{2}\times 4+\frac{-5}{3!}\times 2^{3}
Ka taea te hautanga \frac{-3}{2} te tuhi anō ko -\frac{3}{2} mā te tango i te tohu tōraro.
21+\frac{-3\times 4}{2}+\frac{-5}{3!}\times 2^{3}
Tuhia te -\frac{3}{2}\times 4 hei hautanga kotahi.
21+\frac{-12}{2}+\frac{-5}{3!}\times 2^{3}
Whakareatia te -3 ki te 4, ka -12.
21-6+\frac{-5}{3!}\times 2^{3}
Whakawehea te -12 ki te 2, kia riro ko -6.
15+\frac{-5}{3!}\times 2^{3}
Tangohia te 6 i te 21, ka 15.
15+\frac{-5}{6}\times 2^{3}
Ko te huarea o 3 ko 6.
15-\frac{5}{6}\times 2^{3}
Ka taea te hautanga \frac{-5}{6} te tuhi anō ko -\frac{5}{6} mā te tango i te tohu tōraro.
15-\frac{5}{6}\times 8
Tātaihia te 2 mā te pū o 3, kia riro ko 8.
15+\frac{-5\times 8}{6}
Tuhia te -\frac{5}{6}\times 8 hei hautanga kotahi.
15+\frac{-40}{6}
Whakareatia te -5 ki te 8, ka -40.
15-\frac{20}{3}
Whakahekea te hautanga \frac{-40}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{45}{3}-\frac{20}{3}
Me tahuri te 15 ki te hautau \frac{45}{3}.
\frac{45-20}{3}
Tā te mea he rite te tauraro o \frac{45}{3} me \frac{20}{3}, me tango rāua mā te tango i ō raua taurunga.
\frac{25}{3}
Tangohia te 20 i te 45, ka 25.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}