Whakaoti mō x
x=-1
x=8
Graph
Tohaina
Kua tāruatia ki te papatopenga
x\times 7+8=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 7+8=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x\times 7+8-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+7x+8=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=7 ab=-8=-8
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei -x^{2}+ax+bx+8. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,8 -2,4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -8.
-1+8=7 -2+4=2
Tātaihia te tapeke mō ia takirua.
a=8 b=-1
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(-x^{2}+8x\right)+\left(-x+8\right)
Tuhia anō te -x^{2}+7x+8 hei \left(-x^{2}+8x\right)+\left(-x+8\right).
-x\left(x-8\right)-\left(x-8\right)
Tauwehea te -x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-8\right)\left(-x-1\right)
Whakatauwehea atu te kīanga pātahi x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
x=8 x=-1
Hei kimi otinga whārite, me whakaoti te x-8=0 me te -x-1=0.
x\times 7+8=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 7+8=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x\times 7+8-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
-x^{2}+7x+8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 7 mō b, me 8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\left(-1\right)\times 8}}{2\left(-1\right)}
Pūrua 7.
x=\frac{-7±\sqrt{49+4\times 8}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-7±\sqrt{49+32}}{2\left(-1\right)}
Whakareatia 4 ki te 8.
x=\frac{-7±\sqrt{81}}{2\left(-1\right)}
Tāpiri 49 ki te 32.
x=\frac{-7±9}{2\left(-1\right)}
Tuhia te pūtakerua o te 81.
x=\frac{-7±9}{-2}
Whakareatia 2 ki te -1.
x=\frac{2}{-2}
Nā, me whakaoti te whārite x=\frac{-7±9}{-2} ina he tāpiri te ±. Tāpiri -7 ki te 9.
x=-1
Whakawehe 2 ki te -2.
x=-\frac{16}{-2}
Nā, me whakaoti te whārite x=\frac{-7±9}{-2} ina he tango te ±. Tango 9 mai i -7.
x=8
Whakawehe -16 ki te -2.
x=-1 x=8
Kua oti te whārite te whakatau.
x\times 7+8=xx
Tē taea kia ōrite te tāupe x ki 0 nā te kore tautuhi i te whakawehenga mā te kore. Whakareatia ngā taha e rua o te whārite ki te x.
x\times 7+8=x^{2}
Whakareatia te x ki te x, ka x^{2}.
x\times 7+8-x^{2}=0
Tangohia te x^{2} mai i ngā taha e rua.
x\times 7-x^{2}=-8
Tangohia te 8 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
-x^{2}+7x=-8
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-x^{2}+7x}{-1}=-\frac{8}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{7}{-1}x=-\frac{8}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-7x=-\frac{8}{-1}
Whakawehe 7 ki te -1.
x^{2}-7x=8
Whakawehe -8 ki te -1.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=8+\left(-\frac{7}{2}\right)^{2}
Whakawehea te -7, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{2}. Nā, tāpiria te pūrua o te -\frac{7}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-7x+\frac{49}{4}=8+\frac{49}{4}
Pūruatia -\frac{7}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-7x+\frac{49}{4}=\frac{81}{4}
Tāpiri 8 ki te \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{81}{4}
Tauwehea x^{2}-7x+\frac{49}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{2}=\frac{9}{2} x-\frac{7}{2}=-\frac{9}{2}
Whakarūnātia.
x=8 x=-1
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}