Whakaoti mō x
x=\frac{3y}{2}
Whakaoti mō y
y=\frac{2x}{3}
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-9y+8x-12y+4=4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -2x+3y-1.
14x-9y-12y+4=4
Pahekotia te 6x me 8x, ka 14x.
14x-21y+4=4
Pahekotia te -9y me -12y, ka -21y.
14x+4=4+21y
Me tāpiri te 21y ki ngā taha e rua.
14x=4+21y-4
Tangohia te 4 mai i ngā taha e rua.
14x=21y
Tangohia te 4 i te 4, ka 0.
\frac{14x}{14}=\frac{21y}{14}
Whakawehea ngā taha e rua ki te 14.
x=\frac{21y}{14}
Mā te whakawehe ki te 14 ka wetekia te whakareanga ki te 14.
x=\frac{3y}{2}
Whakawehe 21y ki te 14.
6x-9y+8x-12y+4=4
Whakamahia te āhuatanga tohatoha hei whakarea te -4 ki te -2x+3y-1.
14x-9y-12y+4=4
Pahekotia te 6x me 8x, ka 14x.
14x-21y+4=4
Pahekotia te -9y me -12y, ka -21y.
-21y+4=4-14x
Tangohia te 14x mai i ngā taha e rua.
-21y=4-14x-4
Tangohia te 4 mai i ngā taha e rua.
-21y=-14x
Tangohia te 4 i te 4, ka 0.
\frac{-21y}{-21}=-\frac{14x}{-21}
Whakawehea ngā taha e rua ki te -21.
y=-\frac{14x}{-21}
Mā te whakawehe ki te -21 ka wetekia te whakareanga ki te -21.
y=\frac{2x}{3}
Whakawehe -14x ki te -21.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}