Whakaoti mō x
x=\frac{\sqrt{105}}{12}+\frac{1}{4}\approx 1.103912564
x=-\frac{\sqrt{105}}{12}+\frac{1}{4}\approx -0.603912564
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}\times 2+4=2x+2\times 2x+12
Whakareatia te x ki te x, ka x^{2}.
12x^{2}+4=2x+2\times 2x+12
Whakareatia te 6 ki te 2, ka 12.
12x^{2}+4=2x+4x+12
Whakareatia te 2 ki te 2, ka 4.
12x^{2}+4=6x+12
Pahekotia te 2x me 4x, ka 6x.
12x^{2}+4-6x=12
Tangohia te 6x mai i ngā taha e rua.
12x^{2}+4-6x-12=0
Tangohia te 12 mai i ngā taha e rua.
12x^{2}-8-6x=0
Tangohia te 12 i te 4, ka -8.
12x^{2}-6x-8=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 12\left(-8\right)}}{2\times 12}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 12 mō a, -6 mō b, me -8 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 12\left(-8\right)}}{2\times 12}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-48\left(-8\right)}}{2\times 12}
Whakareatia -4 ki te 12.
x=\frac{-\left(-6\right)±\sqrt{36+384}}{2\times 12}
Whakareatia -48 ki te -8.
x=\frac{-\left(-6\right)±\sqrt{420}}{2\times 12}
Tāpiri 36 ki te 384.
x=\frac{-\left(-6\right)±2\sqrt{105}}{2\times 12}
Tuhia te pūtakerua o te 420.
x=\frac{6±2\sqrt{105}}{2\times 12}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{105}}{24}
Whakareatia 2 ki te 12.
x=\frac{2\sqrt{105}+6}{24}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{105}}{24} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{105}.
x=\frac{\sqrt{105}}{12}+\frac{1}{4}
Whakawehe 6+2\sqrt{105} ki te 24.
x=\frac{6-2\sqrt{105}}{24}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{105}}{24} ina he tango te ±. Tango 2\sqrt{105} mai i 6.
x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
Whakawehe 6-2\sqrt{105} ki te 24.
x=\frac{\sqrt{105}}{12}+\frac{1}{4} x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
Kua oti te whārite te whakatau.
6x^{2}\times 2+4=2x+2\times 2x+12
Whakareatia te x ki te x, ka x^{2}.
12x^{2}+4=2x+2\times 2x+12
Whakareatia te 6 ki te 2, ka 12.
12x^{2}+4=2x+4x+12
Whakareatia te 2 ki te 2, ka 4.
12x^{2}+4=6x+12
Pahekotia te 2x me 4x, ka 6x.
12x^{2}+4-6x=12
Tangohia te 6x mai i ngā taha e rua.
12x^{2}-6x=12-4
Tangohia te 4 mai i ngā taha e rua.
12x^{2}-6x=8
Tangohia te 4 i te 12, ka 8.
\frac{12x^{2}-6x}{12}=\frac{8}{12}
Whakawehea ngā taha e rua ki te 12.
x^{2}+\left(-\frac{6}{12}\right)x=\frac{8}{12}
Mā te whakawehe ki te 12 ka wetekia te whakareanga ki te 12.
x^{2}-\frac{1}{2}x=\frac{8}{12}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x^{2}-\frac{1}{2}x=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{4}\right)^{2}
Whakawehea te -\frac{1}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{4}. Nā, tāpiria te pūrua o te -\frac{1}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{2}{3}+\frac{1}{16}
Pūruatia -\frac{1}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{35}{48}
Tāpiri \frac{2}{3} ki te \frac{1}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{4}\right)^{2}=\frac{35}{48}
Tauwehea x^{2}-\frac{1}{2}x+\frac{1}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{35}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{4}=\frac{\sqrt{105}}{12} x-\frac{1}{4}=-\frac{\sqrt{105}}{12}
Whakarūnātia.
x=\frac{\sqrt{105}}{12}+\frac{1}{4} x=-\frac{\sqrt{105}}{12}+\frac{1}{4}
Me tāpiri \frac{1}{4} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}