Whakaoti mō t
t=\frac{2\sqrt{219}-6}{35}\approx 0.674208491
t=\frac{-2\sqrt{219}-6}{35}\approx -1.017065634
Tohaina
Kua tāruatia ki te papatopenga
12t+35t^{2}=24
Whakareatia ngā taha e rua o te whārite ki te 2.
12t+35t^{2}-24=0
Tangohia te 24 mai i ngā taha e rua.
35t^{2}+12t-24=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-12±\sqrt{12^{2}-4\times 35\left(-24\right)}}{2\times 35}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 35 mō a, 12 mō b, me -24 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{-12±\sqrt{144-4\times 35\left(-24\right)}}{2\times 35}
Pūrua 12.
t=\frac{-12±\sqrt{144-140\left(-24\right)}}{2\times 35}
Whakareatia -4 ki te 35.
t=\frac{-12±\sqrt{144+3360}}{2\times 35}
Whakareatia -140 ki te -24.
t=\frac{-12±\sqrt{3504}}{2\times 35}
Tāpiri 144 ki te 3360.
t=\frac{-12±4\sqrt{219}}{2\times 35}
Tuhia te pūtakerua o te 3504.
t=\frac{-12±4\sqrt{219}}{70}
Whakareatia 2 ki te 35.
t=\frac{4\sqrt{219}-12}{70}
Nā, me whakaoti te whārite t=\frac{-12±4\sqrt{219}}{70} ina he tāpiri te ±. Tāpiri -12 ki te 4\sqrt{219}.
t=\frac{2\sqrt{219}-6}{35}
Whakawehe -12+4\sqrt{219} ki te 70.
t=\frac{-4\sqrt{219}-12}{70}
Nā, me whakaoti te whārite t=\frac{-12±4\sqrt{219}}{70} ina he tango te ±. Tango 4\sqrt{219} mai i -12.
t=\frac{-2\sqrt{219}-6}{35}
Whakawehe -12-4\sqrt{219} ki te 70.
t=\frac{2\sqrt{219}-6}{35} t=\frac{-2\sqrt{219}-6}{35}
Kua oti te whārite te whakatau.
12t+35t^{2}=24
Whakareatia ngā taha e rua o te whārite ki te 2.
35t^{2}+12t=24
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{35t^{2}+12t}{35}=\frac{24}{35}
Whakawehea ngā taha e rua ki te 35.
t^{2}+\frac{12}{35}t=\frac{24}{35}
Mā te whakawehe ki te 35 ka wetekia te whakareanga ki te 35.
t^{2}+\frac{12}{35}t+\left(\frac{6}{35}\right)^{2}=\frac{24}{35}+\left(\frac{6}{35}\right)^{2}
Whakawehea te \frac{12}{35}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{6}{35}. Nā, tāpiria te pūrua o te \frac{6}{35} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
t^{2}+\frac{12}{35}t+\frac{36}{1225}=\frac{24}{35}+\frac{36}{1225}
Pūruatia \frac{6}{35} mā te pūrua i te taurunga me te tauraro o te hautanga.
t^{2}+\frac{12}{35}t+\frac{36}{1225}=\frac{876}{1225}
Tāpiri \frac{24}{35} ki te \frac{36}{1225} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(t+\frac{6}{35}\right)^{2}=\frac{876}{1225}
Tauwehea t^{2}+\frac{12}{35}t+\frac{36}{1225}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(t+\frac{6}{35}\right)^{2}}=\sqrt{\frac{876}{1225}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
t+\frac{6}{35}=\frac{2\sqrt{219}}{35} t+\frac{6}{35}=-\frac{2\sqrt{219}}{35}
Whakarūnātia.
t=\frac{2\sqrt{219}-6}{35} t=\frac{-2\sqrt{219}-6}{35}
Me tango \frac{6}{35} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}