Tīpoka ki ngā ihirangi matua
Whakaoti mō x (complex solution)
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x^{2}=\frac{120-33\sqrt{15}}{68}
Mā te whakawehe ki te 68 ka wetekia te whakareanga ki te 68.
x^{2}=-\frac{33\sqrt{15}}{68}+\frac{30}{17}
Whakawehe 120-33\sqrt{15} ki te 68.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
68x^{2}-120=-33\sqrt{15}
Tangohia te 120 mai i ngā taha e rua.
68x^{2}-120+33\sqrt{15}=0
Me tāpiri te 33\sqrt{15} ki ngā taha e rua.
68x^{2}+33\sqrt{15}-120=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 68 mō a, 0 mō b, me -120+33\sqrt{15} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 68\left(33\sqrt{15}-120\right)}}{2\times 68}
Pūrua 0.
x=\frac{0±\sqrt{-272\left(33\sqrt{15}-120\right)}}{2\times 68}
Whakareatia -4 ki te 68.
x=\frac{0±\sqrt{32640-8976\sqrt{15}}}{2\times 68}
Whakareatia -272 ki te -120+33\sqrt{15}.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{2\times 68}
Tuhia te pūtakerua o te 32640-8976\sqrt{15}.
x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136}
Whakareatia 2 ki te 68.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Nā, me whakaoti te whārite x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} ina he tāpiri te ±.
x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Nā, me whakaoti te whārite x=\frac{0±4i\sqrt{561\sqrt{15}-2040}}{136} ina he tango te ±.
x=\frac{i\sqrt{561\sqrt{15}-2040}}{34} x=-\frac{i\sqrt{561\sqrt{15}-2040}}{34}
Kua oti te whārite te whakatau.