Whakaoti mō g
\left\{\begin{matrix}\\g=0\text{, }&\text{unconditionally}\\g\in \mathrm{R}\text{, }&k=-67\end{matrix}\right.
Whakaoti mō k
\left\{\begin{matrix}\\k=-67\text{, }&\text{unconditionally}\\k\in \mathrm{R}\text{, }&g=0\end{matrix}\right.
Tohaina
Kua tāruatia ki te papatopenga
67g-\left(-k\right)g=0
Tangohia te \left(-k\right)g mai i ngā taha e rua.
67g+kg=0
Whakareatia te -1 ki te -1, ka 1.
\left(67+k\right)g=0
Pahekotia ngā kīanga tau katoa e whai ana i te g.
\left(k+67\right)g=0
He hanga arowhānui tō te whārite.
g=0
Whakawehe 0 ki te 67+k.
\left(-k\right)g=67g
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-gk=67g
Whakaraupapatia anō ngā kīanga tau.
\left(-g\right)k=67g
He hanga arowhānui tō te whārite.
\frac{\left(-g\right)k}{-g}=\frac{67g}{-g}
Whakawehea ngā taha e rua ki te -g.
k=\frac{67g}{-g}
Mā te whakawehe ki te -g ka wetekia te whakareanga ki te -g.
k=-67
Whakawehe 67g ki te -g.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}