Aromātai
\frac{720360000000000000000000000000000}{19}\approx 3.791368421 \cdot 10^{31}
Tauwehe
\frac{2 ^ {30} \cdot 3 ^ {3} \cdot 5 ^ {28} \cdot 23 \cdot 29}{19} = 3.7913684210526317 \times 10^{31}\frac{6}{19} = 3.7913684210526317 \times 10^{31}
Tohaina
Kua tāruatia ki te papatopenga
667\times 10^{-11}\times \frac{190\times 10^{50}\times 108}{19\times 10^{6}\times 19\times 10^{6}}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 27 me te 23 kia riro ai te 50.
667\times 10^{-11}\times \frac{190\times 10^{50}\times 108}{19\times 10^{12}\times 19}
Hei whakarea i ngā pū o te pūtake kotahi, me tāpiri ō rātou taupū. Tāpiria te 6 me te 6 kia riro ai te 12.
667\times \frac{1}{100000000000}\times \frac{190\times 10^{50}\times 108}{19\times 10^{12}\times 19}
Tātaihia te 10 mā te pū o -11, kia riro ko \frac{1}{100000000000}.
\frac{667}{100000000000}\times \frac{190\times 10^{50}\times 108}{19\times 10^{12}\times 19}
Whakareatia te 667 ki te \frac{1}{100000000000}, ka \frac{667}{100000000000}.
\frac{667}{100000000000}\times \frac{108\times 10^{39}}{19}
Me whakakore tahi te 10\times 19\times 10^{11} i te taurunga me te tauraro.
\frac{667}{100000000000}\times \frac{108\times 1000000000000000000000000000000000000000}{19}
Tātaihia te 10 mā te pū o 39, kia riro ko 1000000000000000000000000000000000000000.
\frac{667}{100000000000}\times \frac{108000000000000000000000000000000000000000}{19}
Whakareatia te 108 ki te 1000000000000000000000000000000000000000, ka 108000000000000000000000000000000000000000.
\frac{720360000000000000000000000000000}{19}
Whakareatia te \frac{667}{100000000000} ki te \frac{108000000000000000000000000000000000000000}{19}, ka \frac{720360000000000000000000000000000}{19}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}