Tīpoka ki ngā ihirangi matua
Whakaoti mō s
Tick mark Image
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

661s\left(-t^{2}+3\right)=t^{2}+2
Whakareatia ngā taha e rua o te whārite ki te -t^{2}+3.
-661st^{2}+1983s=t^{2}+2
Whakamahia te āhuatanga tohatoha hei whakarea te 661s ki te -t^{2}+3.
\left(-661t^{2}+1983\right)s=t^{2}+2
Pahekotia ngā kīanga tau katoa e whai ana i te s.
\left(1983-661t^{2}\right)s=t^{2}+2
He hanga arowhānui tō te whārite.
\frac{\left(1983-661t^{2}\right)s}{1983-661t^{2}}=\frac{t^{2}+2}{1983-661t^{2}}
Whakawehea ngā taha e rua ki te -661t^{2}+1983.
s=\frac{t^{2}+2}{1983-661t^{2}}
Mā te whakawehe ki te -661t^{2}+1983 ka wetekia te whakareanga ki te -661t^{2}+1983.
s=\frac{t^{2}+2}{661\left(3-t^{2}\right)}
Whakawehe t^{2}+2 ki te -661t^{2}+1983.