6500 = n [ 595 - 15 n )
Whakaoti mō n
n=\frac{119+\sqrt{1439}i}{6}\approx 19.833333333+6.322358913i
n=\frac{-\sqrt{1439}i+119}{6}\approx 19.833333333-6.322358913i
Tohaina
Kua tāruatia ki te papatopenga
6500=595n-15n^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 595-15n.
595n-15n^{2}=6500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
595n-15n^{2}-6500=0
Tangohia te 6500 mai i ngā taha e rua.
-15n^{2}+595n-6500=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-595±\sqrt{595^{2}-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -15 mō a, 595 mō b, me -6500 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-595±\sqrt{354025-4\left(-15\right)\left(-6500\right)}}{2\left(-15\right)}
Pūrua 595.
n=\frac{-595±\sqrt{354025+60\left(-6500\right)}}{2\left(-15\right)}
Whakareatia -4 ki te -15.
n=\frac{-595±\sqrt{354025-390000}}{2\left(-15\right)}
Whakareatia 60 ki te -6500.
n=\frac{-595±\sqrt{-35975}}{2\left(-15\right)}
Tāpiri 354025 ki te -390000.
n=\frac{-595±5\sqrt{1439}i}{2\left(-15\right)}
Tuhia te pūtakerua o te -35975.
n=\frac{-595±5\sqrt{1439}i}{-30}
Whakareatia 2 ki te -15.
n=\frac{-595+5\sqrt{1439}i}{-30}
Nā, me whakaoti te whārite n=\frac{-595±5\sqrt{1439}i}{-30} ina he tāpiri te ±. Tāpiri -595 ki te 5i\sqrt{1439}.
n=\frac{-\sqrt{1439}i+119}{6}
Whakawehe -595+5i\sqrt{1439} ki te -30.
n=\frac{-5\sqrt{1439}i-595}{-30}
Nā, me whakaoti te whārite n=\frac{-595±5\sqrt{1439}i}{-30} ina he tango te ±. Tango 5i\sqrt{1439} mai i -595.
n=\frac{119+\sqrt{1439}i}{6}
Whakawehe -595-5i\sqrt{1439} ki te -30.
n=\frac{-\sqrt{1439}i+119}{6} n=\frac{119+\sqrt{1439}i}{6}
Kua oti te whārite te whakatau.
6500=595n-15n^{2}
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te 595-15n.
595n-15n^{2}=6500
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
-15n^{2}+595n=6500
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{-15n^{2}+595n}{-15}=\frac{6500}{-15}
Whakawehea ngā taha e rua ki te -15.
n^{2}+\frac{595}{-15}n=\frac{6500}{-15}
Mā te whakawehe ki te -15 ka wetekia te whakareanga ki te -15.
n^{2}-\frac{119}{3}n=\frac{6500}{-15}
Whakahekea te hautanga \frac{595}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
n^{2}-\frac{119}{3}n=-\frac{1300}{3}
Whakahekea te hautanga \frac{6500}{-15} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
n^{2}-\frac{119}{3}n+\left(-\frac{119}{6}\right)^{2}=-\frac{1300}{3}+\left(-\frac{119}{6}\right)^{2}
Whakawehea te -\frac{119}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{119}{6}. Nā, tāpiria te pūrua o te -\frac{119}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1300}{3}+\frac{14161}{36}
Pūruatia -\frac{119}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}-\frac{119}{3}n+\frac{14161}{36}=-\frac{1439}{36}
Tāpiri -\frac{1300}{3} ki te \frac{14161}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(n-\frac{119}{6}\right)^{2}=-\frac{1439}{36}
Tauwehea n^{2}-\frac{119}{3}n+\frac{14161}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{119}{6}\right)^{2}}=\sqrt{-\frac{1439}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n-\frac{119}{6}=\frac{\sqrt{1439}i}{6} n-\frac{119}{6}=-\frac{\sqrt{1439}i}{6}
Whakarūnātia.
n=\frac{119+\sqrt{1439}i}{6} n=\frac{-\sqrt{1439}i+119}{6}
Me tāpiri \frac{119}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}