Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2x^{2}+9x+5=65
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+9x+5-65=0
Tangohia te 65 mai i ngā taha e rua.
2x^{2}+9x-60=0
Tangohia te 65 i te 5, ka -60.
x=\frac{-9±\sqrt{9^{2}-4\times 2\left(-60\right)}}{2\times 2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 2 mō a, 9 mō b, me -60 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 2\left(-60\right)}}{2\times 2}
Pūrua 9.
x=\frac{-9±\sqrt{81-8\left(-60\right)}}{2\times 2}
Whakareatia -4 ki te 2.
x=\frac{-9±\sqrt{81+480}}{2\times 2}
Whakareatia -8 ki te -60.
x=\frac{-9±\sqrt{561}}{2\times 2}
Tāpiri 81 ki te 480.
x=\frac{-9±\sqrt{561}}{4}
Whakareatia 2 ki te 2.
x=\frac{\sqrt{561}-9}{4}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{561}}{4} ina he tāpiri te ±. Tāpiri -9 ki te \sqrt{561}.
x=\frac{-\sqrt{561}-9}{4}
Nā, me whakaoti te whārite x=\frac{-9±\sqrt{561}}{4} ina he tango te ±. Tango \sqrt{561} mai i -9.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Kua oti te whārite te whakatau.
2x^{2}+9x+5=65
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
2x^{2}+9x=65-5
Tangohia te 5 mai i ngā taha e rua.
2x^{2}+9x=60
Tangohia te 5 i te 65, ka 60.
\frac{2x^{2}+9x}{2}=\frac{60}{2}
Whakawehea ngā taha e rua ki te 2.
x^{2}+\frac{9}{2}x=\frac{60}{2}
Mā te whakawehe ki te 2 ka wetekia te whakareanga ki te 2.
x^{2}+\frac{9}{2}x=30
Whakawehe 60 ki te 2.
x^{2}+\frac{9}{2}x+\left(\frac{9}{4}\right)^{2}=30+\left(\frac{9}{4}\right)^{2}
Whakawehea te \frac{9}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{9}{4}. Nā, tāpiria te pūrua o te \frac{9}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{9}{2}x+\frac{81}{16}=30+\frac{81}{16}
Pūruatia \frac{9}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{9}{2}x+\frac{81}{16}=\frac{561}{16}
Tāpiri 30 ki te \frac{81}{16}.
\left(x+\frac{9}{4}\right)^{2}=\frac{561}{16}
Tauwehea x^{2}+\frac{9}{2}x+\frac{81}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{4}\right)^{2}}=\sqrt{\frac{561}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{9}{4}=\frac{\sqrt{561}}{4} x+\frac{9}{4}=-\frac{\sqrt{561}}{4}
Whakarūnātia.
x=\frac{\sqrt{561}-9}{4} x=\frac{-\sqrt{561}-9}{4}
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.