Aromātai
\frac{109}{6}\approx 18.166666667
Tauwehe
\frac{109}{2 \cdot 3} = 18\frac{1}{6} = 18.166666666666668
Tohaina
Kua tāruatia ki te papatopenga
65+\frac{6+1}{6}-48
Whakareatia te 1 ki te 6, ka 6.
65+\frac{7}{6}-48
Tāpirihia te 6 ki te 1, ka 7.
\frac{390}{6}+\frac{7}{6}-48
Me tahuri te 65 ki te hautau \frac{390}{6}.
\frac{390+7}{6}-48
Tā te mea he rite te tauraro o \frac{390}{6} me \frac{7}{6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{397}{6}-48
Tāpirihia te 390 ki te 7, ka 397.
\frac{397}{6}-\frac{288}{6}
Me tahuri te 48 ki te hautau \frac{288}{6}.
\frac{397-288}{6}
Tā te mea he rite te tauraro o \frac{397}{6} me \frac{288}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{109}{6}
Tangohia te 288 i te 397, ka 109.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}