Whakaoti mō P
P = \frac{6229198165311525677}{4500000000000000} = 1384\frac{1198165311525888}{4500000000000000} \approx 1384.266258958
Pātaitai
Trigonometry
5 raruraru e ōrite ana ki:
65 \times 98 \times 41 \div 36 \times \sin 11 ^ { \circ } = P
Tohaina
Kua tāruatia ki te papatopenga
65 \cdot 98 \cdot 41 / 36 \cdot 0.1908089953765448 = P
Evaluate trigonometric functions in the problem
\frac{6370\times 41}{36}\times 0.1908089953765448=P
Whakareatia te 65 ki te 98, ka 6370.
\frac{261170}{36}\times 0.1908089953765448=P
Whakareatia te 6370 ki te 41, ka 261170.
\frac{130585}{18}\times 0.1908089953765448=P
Whakahekea te hautanga \frac{261170}{36} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{130585}{18}\times \frac{238511244220681}{1250000000000000}=P
Me tahuri ki tau ā-ira 0.1908089953765448 ki te hautau \frac{238511244220681}{10000000000}. Whakahekea te hautanga \frac{238511244220681}{10000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 1.
\frac{130585\times 238511244220681}{18\times 1250000000000000}=P
Me whakarea te \frac{130585}{18} ki te \frac{238511244220681}{1250000000000000} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
\frac{31145990826557628385}{22500000000000000}=P
Mahia ngā whakarea i roto i te hautanga \frac{130585\times 238511244220681}{18\times 1250000000000000}.
\frac{6229198165311525677}{4500000000000000}=P
Whakahekea te hautanga \frac{31145990826557628385}{22500000000000000} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
P=\frac{6229198165311525677}{4500000000000000}
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}