Whakaoti mō x (complex solution)
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16}\approx -0.419262746+0.582961191i
x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}\approx -0.419262746-0.582961191i
Graph
Tohaina
Kua tāruatia ki te papatopenga
64x^{2}+24\sqrt{5}x+33=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-24\sqrt{5}±\sqrt{\left(24\sqrt{5}\right)^{2}-4\times 64\times 33}}{2\times 64}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 64 mō a, 24\sqrt{5} mō b, me 33 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-24\sqrt{5}±\sqrt{2880-4\times 64\times 33}}{2\times 64}
Pūrua 24\sqrt{5}.
x=\frac{-24\sqrt{5}±\sqrt{2880-256\times 33}}{2\times 64}
Whakareatia -4 ki te 64.
x=\frac{-24\sqrt{5}±\sqrt{2880-8448}}{2\times 64}
Whakareatia -256 ki te 33.
x=\frac{-24\sqrt{5}±\sqrt{-5568}}{2\times 64}
Tāpiri 2880 ki te -8448.
x=\frac{-24\sqrt{5}±8\sqrt{87}i}{2\times 64}
Tuhia te pūtakerua o te -5568.
x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128}
Whakareatia 2 ki te 64.
x=\frac{-24\sqrt{5}+8\sqrt{87}i}{128}
Nā, me whakaoti te whārite x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128} ina he tāpiri te ±. Tāpiri -24\sqrt{5} ki te 8i\sqrt{87}.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16}
Whakawehe -24\sqrt{5}+8i\sqrt{87} ki te 128.
x=\frac{-8\sqrt{87}i-24\sqrt{5}}{128}
Nā, me whakaoti te whārite x=\frac{-24\sqrt{5}±8\sqrt{87}i}{128} ina he tango te ±. Tango 8i\sqrt{87} mai i -24\sqrt{5}.
x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
Whakawehe -24\sqrt{5}-8i\sqrt{87} ki te 128.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16} x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
Kua oti te whārite te whakatau.
64x^{2}+24\sqrt{5}x+33=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
64x^{2}+24\sqrt{5}x+33-33=-33
Me tango 33 mai i ngā taha e rua o te whārite.
64x^{2}+24\sqrt{5}x=-33
Mā te tango i te 33 i a ia ake anō ka toe ko te 0.
\frac{64x^{2}+24\sqrt{5}x}{64}=-\frac{33}{64}
Whakawehea ngā taha e rua ki te 64.
x^{2}+\frac{24\sqrt{5}}{64}x=-\frac{33}{64}
Mā te whakawehe ki te 64 ka wetekia te whakareanga ki te 64.
x^{2}+\frac{3\sqrt{5}}{8}x=-\frac{33}{64}
Whakawehe 24\sqrt{5} ki te 64.
x^{2}+\frac{3\sqrt{5}}{8}x+\left(\frac{3\sqrt{5}}{16}\right)^{2}=-\frac{33}{64}+\left(\frac{3\sqrt{5}}{16}\right)^{2}
Whakawehea te \frac{3\sqrt{5}}{8}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3\sqrt{5}}{16}. Nā, tāpiria te pūrua o te \frac{3\sqrt{5}}{16} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}=-\frac{33}{64}+\frac{45}{256}
Pūrua \frac{3\sqrt{5}}{16}.
x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}=-\frac{87}{256}
Tāpiri -\frac{33}{64} ki te \frac{45}{256} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3\sqrt{5}}{16}\right)^{2}=-\frac{87}{256}
Tauwehea x^{2}+\frac{3\sqrt{5}}{8}x+\frac{45}{256}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3\sqrt{5}}{16}\right)^{2}}=\sqrt{-\frac{87}{256}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3\sqrt{5}}{16}=\frac{\sqrt{87}i}{16} x+\frac{3\sqrt{5}}{16}=-\frac{\sqrt{87}i}{16}
Whakarūnātia.
x=\frac{-3\sqrt{5}+\sqrt{87}i}{16} x=\frac{-\sqrt{87}i-3\sqrt{5}}{16}
Me tango \frac{3\sqrt{5}}{16} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}