Tīpoka ki ngā ihirangi matua
Whakaoti mō d
Tick mark Image
Whakaoti mō n (complex solution)
Tick mark Image
Whakaoti mō n
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

128=2n+n\left(n-1\right)d
Whakareatia ngā taha e rua o te whārite ki te 2.
128=2n+\left(n^{2}-n\right)d
Whakamahia te āhuatanga tohatoha hei whakarea te n ki te n-1.
128=2n+n^{2}d-nd
Whakamahia te āhuatanga tohatoha hei whakarea te n^{2}-n ki te d.
2n+n^{2}d-nd=128
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
n^{2}d-nd=128-2n
Tangohia te 2n mai i ngā taha e rua.
\left(n^{2}-n\right)d=128-2n
Pahekotia ngā kīanga tau katoa e whai ana i te d.
\frac{\left(n^{2}-n\right)d}{n^{2}-n}=\frac{128-2n}{n^{2}-n}
Whakawehea ngā taha e rua ki te n^{2}-n.
d=\frac{128-2n}{n^{2}-n}
Mā te whakawehe ki te n^{2}-n ka wetekia te whakareanga ki te n^{2}-n.
d=\frac{2\left(64-n\right)}{n\left(n-1\right)}
Whakawehe 128-2n ki te n^{2}-n.