Whakaoti mō c
c=-5
c=3
Pātaitai
Quadratic Equation
5 raruraru e ōrite ana ki:
64 = 49+ { c }^{ 2 } -2 \cdot 7c(- \frac{ 1 }{ 7 } )
Tohaina
Kua tāruatia ki te papatopenga
64=49+c^{2}-14c\left(-\frac{1}{7}\right)
Whakareatia te 2 ki te 7, ka 14.
64=49+c^{2}-\left(-2c\right)
Whakareatia te 14 ki te -\frac{1}{7}, ka -2.
64=49+c^{2}+2c
Ko te tauaro o -2c ko 2c.
49+c^{2}+2c=64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49+c^{2}+2c-64=0
Tangohia te 64 mai i ngā taha e rua.
-15+c^{2}+2c=0
Tangohia te 64 i te 49, ka -15.
c^{2}+2c-15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=-15
Hei whakaoti i te whārite, whakatauwehea te c^{2}+2c-15 mā te whakamahi i te tātai c^{2}+\left(a+b\right)c+ab=\left(c+a\right)\left(c+b\right). Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,15 -3,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
-1+15=14 -3+5=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=5
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(c-3\right)\left(c+5\right)
Me tuhi anō te kīanga whakatauwehe \left(c+a\right)\left(c+b\right) mā ngā uara i tātaihia.
c=3 c=-5
Hei kimi otinga whārite, me whakaoti te c-3=0 me te c+5=0.
64=49+c^{2}-14c\left(-\frac{1}{7}\right)
Whakareatia te 2 ki te 7, ka 14.
64=49+c^{2}-\left(-2c\right)
Whakareatia te 14 ki te -\frac{1}{7}, ka -2.
64=49+c^{2}+2c
Ko te tauaro o -2c ko 2c.
49+c^{2}+2c=64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49+c^{2}+2c-64=0
Tangohia te 64 mai i ngā taha e rua.
-15+c^{2}+2c=0
Tangohia te 64 i te 49, ka -15.
c^{2}+2c-15=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=2 ab=1\left(-15\right)=-15
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei c^{2}+ac+bc-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,15 -3,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -15.
-1+15=14 -3+5=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=5
Ko te otinga te takirua ka hoatu i te tapeke 2.
\left(c^{2}-3c\right)+\left(5c-15\right)
Tuhia anō te c^{2}+2c-15 hei \left(c^{2}-3c\right)+\left(5c-15\right).
c\left(c-3\right)+5\left(c-3\right)
Tauwehea te c i te tuatahi me te 5 i te rōpū tuarua.
\left(c-3\right)\left(c+5\right)
Whakatauwehea atu te kīanga pātahi c-3 mā te whakamahi i te āhuatanga tātai tohatoha.
c=3 c=-5
Hei kimi otinga whārite, me whakaoti te c-3=0 me te c+5=0.
64=49+c^{2}-14c\left(-\frac{1}{7}\right)
Whakareatia te 2 ki te 7, ka 14.
64=49+c^{2}-\left(-2c\right)
Whakareatia te 14 ki te -\frac{1}{7}, ka -2.
64=49+c^{2}+2c
Ko te tauaro o -2c ko 2c.
49+c^{2}+2c=64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
49+c^{2}+2c-64=0
Tangohia te 64 mai i ngā taha e rua.
-15+c^{2}+2c=0
Tangohia te 64 i te 49, ka -15.
c^{2}+2c-15=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, 2 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Pūrua 2.
c=\frac{-2±\sqrt{4+60}}{2}
Whakareatia -4 ki te -15.
c=\frac{-2±\sqrt{64}}{2}
Tāpiri 4 ki te 60.
c=\frac{-2±8}{2}
Tuhia te pūtakerua o te 64.
c=\frac{6}{2}
Nā, me whakaoti te whārite c=\frac{-2±8}{2} ina he tāpiri te ±. Tāpiri -2 ki te 8.
c=3
Whakawehe 6 ki te 2.
c=-\frac{10}{2}
Nā, me whakaoti te whārite c=\frac{-2±8}{2} ina he tango te ±. Tango 8 mai i -2.
c=-5
Whakawehe -10 ki te 2.
c=3 c=-5
Kua oti te whārite te whakatau.
64=49+c^{2}-14c\left(-\frac{1}{7}\right)
Whakareatia te 2 ki te 7, ka 14.
64=49+c^{2}-\left(-2c\right)
Whakareatia te 14 ki te -\frac{1}{7}, ka -2.
64=49+c^{2}+2c
Ko te tauaro o -2c ko 2c.
49+c^{2}+2c=64
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
c^{2}+2c=64-49
Tangohia te 49 mai i ngā taha e rua.
c^{2}+2c=15
Tangohia te 49 i te 64, ka 15.
c^{2}+2c+1^{2}=15+1^{2}
Whakawehea te 2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te 1. Nā, tāpiria te pūrua o te 1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
c^{2}+2c+1=15+1
Pūrua 1.
c^{2}+2c+1=16
Tāpiri 15 ki te 1.
\left(c+1\right)^{2}=16
Tauwehea c^{2}+2c+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(c+1\right)^{2}}=\sqrt{16}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
c+1=4 c+1=-4
Whakarūnātia.
c=3 c=-5
Me tango 1 mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}