Whakaoti mō n
n = -\frac{53}{4} = -13\frac{1}{4} = -13.25
n=12
Tohaina
Kua tāruatia ki te papatopenga
5n+4n^{2}=636
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5n+4n^{2}-636=0
Tangohia te 636 mai i ngā taha e rua.
4n^{2}+5n-636=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=5 ab=4\left(-636\right)=-2544
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 4n^{2}+an+bn-636. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,2544 -2,1272 -3,848 -4,636 -6,424 -8,318 -12,212 -16,159 -24,106 -48,53
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -2544.
-1+2544=2543 -2+1272=1270 -3+848=845 -4+636=632 -6+424=418 -8+318=310 -12+212=200 -16+159=143 -24+106=82 -48+53=5
Tātaihia te tapeke mō ia takirua.
a=-48 b=53
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(4n^{2}-48n\right)+\left(53n-636\right)
Tuhia anō te 4n^{2}+5n-636 hei \left(4n^{2}-48n\right)+\left(53n-636\right).
4n\left(n-12\right)+53\left(n-12\right)
Tauwehea te 4n i te tuatahi me te 53 i te rōpū tuarua.
\left(n-12\right)\left(4n+53\right)
Whakatauwehea atu te kīanga pātahi n-12 mā te whakamahi i te āhuatanga tātai tohatoha.
n=12 n=-\frac{53}{4}
Hei kimi otinga whārite, me whakaoti te n-12=0 me te 4n+53=0.
5n+4n^{2}=636
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
5n+4n^{2}-636=0
Tangohia te 636 mai i ngā taha e rua.
4n^{2}+5n-636=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
n=\frac{-5±\sqrt{5^{2}-4\times 4\left(-636\right)}}{2\times 4}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 4 mō a, 5 mō b, me -636 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-5±\sqrt{25-4\times 4\left(-636\right)}}{2\times 4}
Pūrua 5.
n=\frac{-5±\sqrt{25-16\left(-636\right)}}{2\times 4}
Whakareatia -4 ki te 4.
n=\frac{-5±\sqrt{25+10176}}{2\times 4}
Whakareatia -16 ki te -636.
n=\frac{-5±\sqrt{10201}}{2\times 4}
Tāpiri 25 ki te 10176.
n=\frac{-5±101}{2\times 4}
Tuhia te pūtakerua o te 10201.
n=\frac{-5±101}{8}
Whakareatia 2 ki te 4.
n=\frac{96}{8}
Nā, me whakaoti te whārite n=\frac{-5±101}{8} ina he tāpiri te ±. Tāpiri -5 ki te 101.
n=12
Whakawehe 96 ki te 8.
n=-\frac{106}{8}
Nā, me whakaoti te whārite n=\frac{-5±101}{8} ina he tango te ±. Tango 101 mai i -5.
n=-\frac{53}{4}
Whakahekea te hautanga \frac{-106}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=12 n=-\frac{53}{4}
Kua oti te whārite te whakatau.
5n+4n^{2}=636
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
4n^{2}+5n=636
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{4n^{2}+5n}{4}=\frac{636}{4}
Whakawehea ngā taha e rua ki te 4.
n^{2}+\frac{5}{4}n=\frac{636}{4}
Mā te whakawehe ki te 4 ka wetekia te whakareanga ki te 4.
n^{2}+\frac{5}{4}n=159
Whakawehe 636 ki te 4.
n^{2}+\frac{5}{4}n+\left(\frac{5}{8}\right)^{2}=159+\left(\frac{5}{8}\right)^{2}
Whakawehea te \frac{5}{4}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{8}. Nā, tāpiria te pūrua o te \frac{5}{8} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
n^{2}+\frac{5}{4}n+\frac{25}{64}=159+\frac{25}{64}
Pūruatia \frac{5}{8} mā te pūrua i te taurunga me te tauraro o te hautanga.
n^{2}+\frac{5}{4}n+\frac{25}{64}=\frac{10201}{64}
Tāpiri 159 ki te \frac{25}{64}.
\left(n+\frac{5}{8}\right)^{2}=\frac{10201}{64}
Tauwehea n^{2}+\frac{5}{4}n+\frac{25}{64}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n+\frac{5}{8}\right)^{2}}=\sqrt{\frac{10201}{64}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
n+\frac{5}{8}=\frac{101}{8} n+\frac{5}{8}=-\frac{101}{8}
Whakarūnātia.
n=12 n=-\frac{53}{4}
Me tango \frac{5}{8} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}