Aromātai
\frac{1307}{21}\approx 62.238095238
Tauwehe
\frac{1307}{3 \cdot 7} = 62\frac{5}{21} = 62.23809523809524
Tohaina
Kua tāruatia ki te papatopenga
63+\frac{13\times \frac{4}{7}}{6}-2
Tātaitia te pūtakerua o 169 kia tae ki 13.
63+\frac{\frac{13\times 4}{7}}{6}-2
Tuhia te 13\times \frac{4}{7} hei hautanga kotahi.
63+\frac{\frac{52}{7}}{6}-2
Whakareatia te 13 ki te 4, ka 52.
63+\frac{52}{7\times 6}-2
Tuhia te \frac{\frac{52}{7}}{6} hei hautanga kotahi.
63+\frac{52}{42}-2
Whakareatia te 7 ki te 6, ka 42.
63+\frac{26}{21}-2
Whakahekea te hautanga \frac{52}{42} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{1323}{21}+\frac{26}{21}-2
Me tahuri te 63 ki te hautau \frac{1323}{21}.
\frac{1323+26}{21}-2
Tā te mea he rite te tauraro o \frac{1323}{21} me \frac{26}{21}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{1349}{21}-2
Tāpirihia te 1323 ki te 26, ka 1349.
\frac{1349}{21}-\frac{42}{21}
Me tahuri te 2 ki te hautau \frac{42}{21}.
\frac{1349-42}{21}
Tā te mea he rite te tauraro o \frac{1349}{21} me \frac{42}{21}, me tango rāua mā te tango i ō raua taurunga.
\frac{1307}{21}
Tangohia te 42 i te 1349, ka 1307.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}