Whakaoti mō h
h=\frac{3}{20}=0.15
Tohaina
Kua tāruatia ki te papatopenga
6280=\frac{314}{3}\times 20^{2}h
Whakareatia te \frac{1}{3} ki te 314, ka \frac{314}{3}.
6280=\frac{314}{3}\times 400h
Tātaihia te 20 mā te pū o 2, kia riro ko 400.
6280=\frac{314\times 400}{3}h
Tuhia te \frac{314}{3}\times 400 hei hautanga kotahi.
6280=\frac{125600}{3}h
Whakareatia te 314 ki te 400, ka 125600.
\frac{125600}{3}h=6280
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
h=6280\times \frac{3}{125600}
Me whakarea ngā taha e rua ki te \frac{3}{125600}, te tau utu o \frac{125600}{3}.
h=\frac{6280\times 3}{125600}
Tuhia te 6280\times \frac{3}{125600} hei hautanga kotahi.
h=\frac{18840}{125600}
Whakareatia te 6280 ki te 3, ka 18840.
h=\frac{3}{20}
Whakahekea te hautanga \frac{18840}{125600} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6280.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}