Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

62x^{2}+3x-1=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-3±\sqrt{3^{2}-4\times 62\left(-1\right)}}{2\times 62}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 62 mō te a, te 3 mō te b, me te -1 mō te c i te ture pūrua.
x=\frac{-3±\sqrt{257}}{124}
Mahia ngā tātaitai.
x=\frac{\sqrt{257}-3}{124} x=\frac{-\sqrt{257}-3}{124}
Whakaotia te whārite x=\frac{-3±\sqrt{257}}{124} ina he tōrunga te ±, ina he tōraro te ±.
62\left(x-\frac{\sqrt{257}-3}{124}\right)\left(x-\frac{-\sqrt{257}-3}{124}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-\frac{\sqrt{257}-3}{124}>0 x-\frac{-\sqrt{257}-3}{124}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-\frac{\sqrt{257}-3}{124} me te x-\frac{-\sqrt{257}-3}{124}. Whakaarohia te tauira ina he tōrunga te x-\frac{\sqrt{257}-3}{124} he tōraro te x-\frac{-\sqrt{257}-3}{124}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x-\frac{-\sqrt{257}-3}{124}>0 x-\frac{\sqrt{257}-3}{124}<0
Whakaarohia te tauira ina he tōrunga te x-\frac{-\sqrt{257}-3}{124} he tōraro te x-\frac{\sqrt{257}-3}{124}.
x\in \left(\frac{-\sqrt{257}-3}{124},\frac{\sqrt{257}-3}{124}\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(\frac{-\sqrt{257}-3}{124},\frac{\sqrt{257}-3}{124}\right).
x\in \left(\frac{-\sqrt{257}-3}{124},\frac{\sqrt{257}-3}{124}\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.