6000+75 \% (x-1) < 80 \% x
Whakaoti mō x
x>119985
Graph
Tohaina
Kua tāruatia ki te papatopenga
6000+\frac{3}{4}\left(x-1\right)<\frac{80}{100}x
Whakahekea te hautanga \frac{75}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 25.
6000+\frac{3}{4}x+\frac{3}{4}\left(-1\right)<\frac{80}{100}x
Whakamahia te āhuatanga tohatoha hei whakarea te \frac{3}{4} ki te x-1.
6000+\frac{3}{4}x-\frac{3}{4}<\frac{80}{100}x
Whakareatia te \frac{3}{4} ki te -1, ka -\frac{3}{4}.
\frac{24000}{4}+\frac{3}{4}x-\frac{3}{4}<\frac{80}{100}x
Me tahuri te 6000 ki te hautau \frac{24000}{4}.
\frac{24000-3}{4}+\frac{3}{4}x<\frac{80}{100}x
Tā te mea he rite te tauraro o \frac{24000}{4} me \frac{3}{4}, me tango rāua mā te tango i ō raua taurunga.
\frac{23997}{4}+\frac{3}{4}x<\frac{80}{100}x
Tangohia te 3 i te 24000, ka 23997.
\frac{23997}{4}+\frac{3}{4}x<\frac{4}{5}x
Whakahekea te hautanga \frac{80}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
\frac{23997}{4}+\frac{3}{4}x-\frac{4}{5}x<0
Tangohia te \frac{4}{5}x mai i ngā taha e rua.
\frac{23997}{4}-\frac{1}{20}x<0
Pahekotia te \frac{3}{4}x me -\frac{4}{5}x, ka -\frac{1}{20}x.
-\frac{1}{20}x<-\frac{23997}{4}
Tangohia te \frac{23997}{4} mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x>-\frac{23997}{4}\left(-20\right)
Me whakarea ngā taha e rua ki te -20, te tau utu o -\frac{1}{20}. I te mea he tōraro a -\frac{1}{20}, ka huri te ahunga koreōrite.
x>\frac{-23997\left(-20\right)}{4}
Tuhia te -\frac{23997}{4}\left(-20\right) hei hautanga kotahi.
x>\frac{479940}{4}
Whakareatia te -23997 ki te -20, ka 479940.
x>119985
Whakawehea te 479940 ki te 4, kia riro ko 119985.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}