Tauwehe
2\left(x-20\right)\left(x-15\right)
Aromātai
2\left(x-20\right)\left(x-15\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
2\left(300-15x-20x+x^{2}\right)
Tauwehea te 2.
x^{2}-35x+300
Whakaarohia te 300-15x-20x+x^{2}. Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=-35 ab=1\times 300=300
Whakaarohia te x^{2}-35x+300. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei x^{2}+ax+bx+300. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-300 -2,-150 -3,-100 -4,-75 -5,-60 -6,-50 -10,-30 -12,-25 -15,-20
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 300.
-1-300=-301 -2-150=-152 -3-100=-103 -4-75=-79 -5-60=-65 -6-50=-56 -10-30=-40 -12-25=-37 -15-20=-35
Tātaihia te tapeke mō ia takirua.
a=-20 b=-15
Ko te otinga te takirua ka hoatu i te tapeke -35.
\left(x^{2}-20x\right)+\left(-15x+300\right)
Tuhia anō te x^{2}-35x+300 hei \left(x^{2}-20x\right)+\left(-15x+300\right).
x\left(x-20\right)-15\left(x-20\right)
Tauwehea te x i te tuatahi me te -15 i te rōpū tuarua.
\left(x-20\right)\left(x-15\right)
Whakatauwehea atu te kīanga pātahi x-20 mā te whakamahi i te āhuatanga tātai tohatoha.
2\left(x-20\right)\left(x-15\right)
Me tuhi anō te kīanga whakatauwehe katoa.
600-70x+2x^{2}
Pahekotia te -30x me -40x, ka -70x.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}