Whakaoti mō x
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx 0.27944656
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}\approx -10.07944656
Graph
Tohaina
Kua tāruatia ki te papatopenga
60x^{2}+588x-169=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-588±\sqrt{588^{2}-4\times 60\left(-169\right)}}{2\times 60}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 60 mō a, 588 mō b, me -169 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-588±\sqrt{345744-4\times 60\left(-169\right)}}{2\times 60}
Pūrua 588.
x=\frac{-588±\sqrt{345744-240\left(-169\right)}}{2\times 60}
Whakareatia -4 ki te 60.
x=\frac{-588±\sqrt{345744+40560}}{2\times 60}
Whakareatia -240 ki te -169.
x=\frac{-588±\sqrt{386304}}{2\times 60}
Tāpiri 345744 ki te 40560.
x=\frac{-588±16\sqrt{1509}}{2\times 60}
Tuhia te pūtakerua o te 386304.
x=\frac{-588±16\sqrt{1509}}{120}
Whakareatia 2 ki te 60.
x=\frac{16\sqrt{1509}-588}{120}
Nā, me whakaoti te whārite x=\frac{-588±16\sqrt{1509}}{120} ina he tāpiri te ±. Tāpiri -588 ki te 16\sqrt{1509}.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Whakawehe -588+16\sqrt{1509} ki te 120.
x=\frac{-16\sqrt{1509}-588}{120}
Nā, me whakaoti te whārite x=\frac{-588±16\sqrt{1509}}{120} ina he tango te ±. Tango 16\sqrt{1509} mai i -588.
x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Whakawehe -588-16\sqrt{1509} ki te 120.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Kua oti te whārite te whakatau.
60x^{2}+588x-169=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
60x^{2}+588x-169-\left(-169\right)=-\left(-169\right)
Me tāpiri 169 ki ngā taha e rua o te whārite.
60x^{2}+588x=-\left(-169\right)
Mā te tango i te -169 i a ia ake anō ka toe ko te 0.
60x^{2}+588x=169
Tango -169 mai i 0.
\frac{60x^{2}+588x}{60}=\frac{169}{60}
Whakawehea ngā taha e rua ki te 60.
x^{2}+\frac{588}{60}x=\frac{169}{60}
Mā te whakawehe ki te 60 ka wetekia te whakareanga ki te 60.
x^{2}+\frac{49}{5}x=\frac{169}{60}
Whakahekea te hautanga \frac{588}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 12.
x^{2}+\frac{49}{5}x+\left(\frac{49}{10}\right)^{2}=\frac{169}{60}+\left(\frac{49}{10}\right)^{2}
Whakawehea te \frac{49}{5}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{49}{10}. Nā, tāpiria te pūrua o te \frac{49}{10} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{169}{60}+\frac{2401}{100}
Pūruatia \frac{49}{10} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{49}{5}x+\frac{2401}{100}=\frac{2012}{75}
Tāpiri \frac{169}{60} ki te \frac{2401}{100} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{49}{10}\right)^{2}=\frac{2012}{75}
Tauwehea x^{2}+\frac{49}{5}x+\frac{2401}{100}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{49}{10}\right)^{2}}=\sqrt{\frac{2012}{75}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{49}{10}=\frac{2\sqrt{1509}}{15} x+\frac{49}{10}=-\frac{2\sqrt{1509}}{15}
Whakarūnātia.
x=\frac{2\sqrt{1509}}{15}-\frac{49}{10} x=-\frac{2\sqrt{1509}}{15}-\frac{49}{10}
Me tango \frac{49}{10} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}