Tīpoka ki ngā ihirangi matua
Whakaoti mō t
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\frac{60\left(-t+1\right)^{2}}{60}=\frac{486}{60}
Whakawehea ngā taha e rua ki te 60.
\left(-t+1\right)^{2}=\frac{486}{60}
Mā te whakawehe ki te 60 ka wetekia te whakareanga ki te 60.
\left(-t+1\right)^{2}=\frac{81}{10}
Whakahekea te hautanga \frac{486}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-t+1=\frac{9\sqrt{10}}{10} -t+1=-\frac{9\sqrt{10}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-t+1-1=\frac{9\sqrt{10}}{10}-1 -t+1-1=-\frac{9\sqrt{10}}{10}-1
Me tango 1 mai i ngā taha e rua o te whārite.
-t=\frac{9\sqrt{10}}{10}-1 -t=-\frac{9\sqrt{10}}{10}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
-t=\frac{9\sqrt{10}}{10}-1
Tango 1 mai i \frac{9\sqrt{10}}{10}.
-t=-\frac{9\sqrt{10}}{10}-1
Tango 1 mai i -\frac{9\sqrt{10}}{10}.
\frac{-t}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-t}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Whakawehea ngā taha e rua ki te -1.
t=\frac{\frac{9\sqrt{10}}{10}-1}{-1} t=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t=-\frac{9\sqrt{10}}{10}+1
Whakawehe \frac{9\sqrt{10}}{10}-1 ki te -1.
t=\frac{9\sqrt{10}}{10}+1
Whakawehe -\frac{9\sqrt{10}}{10}-1 ki te -1.
t=-\frac{9\sqrt{10}}{10}+1 t=\frac{9\sqrt{10}}{10}+1
Kua oti te whārite te whakatau.