Whakaoti mō t
t=-\frac{9\sqrt{10}}{10}+1\approx -1.846049894
t=\frac{9\sqrt{10}}{10}+1\approx 3.846049894
Tohaina
Kua tāruatia ki te papatopenga
\frac{60\left(-t+1\right)^{2}}{60}=\frac{486}{60}
Whakawehea ngā taha e rua ki te 60.
\left(-t+1\right)^{2}=\frac{486}{60}
Mā te whakawehe ki te 60 ka wetekia te whakareanga ki te 60.
\left(-t+1\right)^{2}=\frac{81}{10}
Whakahekea te hautanga \frac{486}{60} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
-t+1=\frac{9\sqrt{10}}{10} -t+1=-\frac{9\sqrt{10}}{10}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
-t+1-1=\frac{9\sqrt{10}}{10}-1 -t+1-1=-\frac{9\sqrt{10}}{10}-1
Me tango 1 mai i ngā taha e rua o te whārite.
-t=\frac{9\sqrt{10}}{10}-1 -t=-\frac{9\sqrt{10}}{10}-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
-t=\frac{9\sqrt{10}}{10}-1
Tango 1 mai i \frac{9\sqrt{10}}{10}.
-t=-\frac{9\sqrt{10}}{10}-1
Tango 1 mai i -\frac{9\sqrt{10}}{10}.
\frac{-t}{-1}=\frac{\frac{9\sqrt{10}}{10}-1}{-1} \frac{-t}{-1}=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Whakawehea ngā taha e rua ki te -1.
t=\frac{\frac{9\sqrt{10}}{10}-1}{-1} t=\frac{-\frac{9\sqrt{10}}{10}-1}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
t=-\frac{9\sqrt{10}}{10}+1
Whakawehe \frac{9\sqrt{10}}{10}-1 ki te -1.
t=\frac{9\sqrt{10}}{10}+1
Whakawehe -\frac{9\sqrt{10}}{10}-1 ki te -1.
t=-\frac{9\sqrt{10}}{10}+1 t=\frac{9\sqrt{10}}{10}+1
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}