Aromātai
\frac{336}{5}=67.2
Tauwehe
\frac{2 ^ {4} \cdot 3 \cdot 7}{5} = 67\frac{1}{5} = 67.2
Tohaina
Kua tāruatia ki te papatopenga
60+2\left(7+\frac{18}{5}\right)-\left(7\times 3-18-2+13\right)
Tangohia te 8 i te 13, ka 5.
60+2\left(\frac{35}{5}+\frac{18}{5}\right)-\left(7\times 3-18-2+13\right)
Me tahuri te 7 ki te hautau \frac{35}{5}.
60+2\times \frac{35+18}{5}-\left(7\times 3-18-2+13\right)
Tā te mea he rite te tauraro o \frac{35}{5} me \frac{18}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
60+2\times \frac{53}{5}-\left(7\times 3-18-2+13\right)
Tāpirihia te 35 ki te 18, ka 53.
60+\frac{2\times 53}{5}-\left(7\times 3-18-2+13\right)
Tuhia te 2\times \frac{53}{5} hei hautanga kotahi.
60+\frac{106}{5}-\left(7\times 3-18-2+13\right)
Whakareatia te 2 ki te 53, ka 106.
\frac{300}{5}+\frac{106}{5}-\left(7\times 3-18-2+13\right)
Me tahuri te 60 ki te hautau \frac{300}{5}.
\frac{300+106}{5}-\left(7\times 3-18-2+13\right)
Tā te mea he rite te tauraro o \frac{300}{5} me \frac{106}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{406}{5}-\left(7\times 3-18-2+13\right)
Tāpirihia te 300 ki te 106, ka 406.
\frac{406}{5}-\left(21-18-2+13\right)
Whakareatia te 7 ki te 3, ka 21.
\frac{406}{5}-\left(3-2+13\right)
Tangohia te 18 i te 21, ka 3.
\frac{406}{5}-\left(1+13\right)
Tangohia te 2 i te 3, ka 1.
\frac{406}{5}-14
Tāpirihia te 1 ki te 13, ka 14.
\frac{406}{5}-\frac{70}{5}
Me tahuri te 14 ki te hautau \frac{70}{5}.
\frac{406-70}{5}
Tā te mea he rite te tauraro o \frac{406}{5} me \frac{70}{5}, me tango rāua mā te tango i ō raua taurunga.
\frac{336}{5}
Tangohia te 70 i te 406, ka 336.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}