Whakaoti mō x
x = \frac{\sqrt{210}}{7} \approx 2.070196678
x = -\frac{\sqrt{210}}{7} \approx -2.070196678
Graph
Tohaina
Kua tāruatia ki te papatopenga
6.3x^{2}=27
Me tāpiri te 27 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{27}{6.3}
Whakawehea ngā taha e rua ki te 6.3.
x^{2}=\frac{270}{63}
Whakarohaina te \frac{27}{6.3} mā te whakarea i te taurunga me te tauraro ki te 10.
x^{2}=\frac{30}{7}
Whakahekea te hautanga \frac{270}{63} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 9.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6.3x^{2}-27=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6.3\left(-27\right)}}{2\times 6.3}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6.3 mō a, 0 mō b, me -27 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6.3\left(-27\right)}}{2\times 6.3}
Pūrua 0.
x=\frac{0±\sqrt{-25.2\left(-27\right)}}{2\times 6.3}
Whakareatia -4 ki te 6.3.
x=\frac{0±\sqrt{680.4}}{2\times 6.3}
Whakareatia -25.2 ki te -27.
x=\frac{0±\frac{9\sqrt{210}}{5}}{2\times 6.3}
Tuhia te pūtakerua o te 680.4.
x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6}
Whakareatia 2 ki te 6.3.
x=\frac{\sqrt{210}}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} ina he tāpiri te ±.
x=-\frac{\sqrt{210}}{7}
Nā, me whakaoti te whārite x=\frac{0±\frac{9\sqrt{210}}{5}}{12.6} ina he tango te ±.
x=\frac{\sqrt{210}}{7} x=-\frac{\sqrt{210}}{7}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}