Whakaoti mō x
x=-5.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6.25x+5=3.75x-8.75
Tangohia te 2.5 i te 7.5, ka 5.
6.25x+5-3.75x=-8.75
Tangohia te 3.75x mai i ngā taha e rua.
2.5x+5=-8.75
Pahekotia te 6.25x me -3.75x, ka 2.5x.
2.5x=-8.75-5
Tangohia te 5 mai i ngā taha e rua.
2.5x=-13.75
Tangohia te 5 i te -8.75, ka -13.75.
x=\frac{-13.75}{2.5}
Whakawehea ngā taha e rua ki te 2.5.
x=\frac{-1375}{250}
Whakarohaina te \frac{-13.75}{2.5} mā te whakarea i te taurunga me te tauraro ki te 100.
x=-\frac{11}{2}
Whakahekea te hautanga \frac{-1375}{250} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 125.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}