Whakaoti mō x
x=-\frac{1}{2}=-0.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
6-1-\left(-2x\right)+x\left(4-x\right)=1-x\left(2+x\right)
Hei kimi i te tauaro o 1-2x, kimihia te tauaro o ia taurangi.
6-1+2x+x\left(4-x\right)=1-x\left(2+x\right)
Ko te tauaro o -2x ko 2x.
5+2x+x\left(4-x\right)=1-x\left(2+x\right)
Tangohia te 1 i te 6, ka 5.
5+2x+4x-x^{2}=1-x\left(2+x\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 4-x.
5+6x-x^{2}=1-x\left(2+x\right)
Pahekotia te 2x me 4x, ka 6x.
5+6x-x^{2}=1-\left(2x+x^{2}\right)
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 2+x.
5+6x-x^{2}=1-2x-x^{2}
Hei kimi i te tauaro o 2x+x^{2}, kimihia te tauaro o ia taurangi.
5+6x-x^{2}+2x=1-x^{2}
Me tāpiri te 2x ki ngā taha e rua.
5+8x-x^{2}=1-x^{2}
Pahekotia te 6x me 2x, ka 8x.
5+8x-x^{2}+x^{2}=1
Me tāpiri te x^{2} ki ngā taha e rua.
5+8x=1
Pahekotia te -x^{2} me x^{2}, ka 0.
8x=1-5
Tangohia te 5 mai i ngā taha e rua.
8x=-4
Tangohia te 5 i te 1, ka -4.
x=\frac{-4}{8}
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-4}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}