Aromātai
4
Tauwehe
2^{2}
Tohaina
Kua tāruatia ki te papatopenga
\frac{12}{2}-\frac{3}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Me tahuri te 6 ki te hautau \frac{12}{2}.
\frac{12-3}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Tā te mea he rite te tauraro o \frac{12}{2} me \frac{3}{2}, me tango rāua mā te tango i ō raua taurunga.
\frac{9}{2}-\left(\frac{11}{12}+\frac{1}{4}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Tangohia te 3 i te 12, ka 9.
\frac{9}{2}-\left(\frac{11}{12}+\frac{3}{12}\right)-\left(\frac{1}{2}-\frac{7}{6}\right)
Ko te maha noa iti rawa atu o 12 me 4 ko 12. Me tahuri \frac{11}{12} me \frac{1}{4} ki te hautau me te tautūnga 12.
\frac{9}{2}-\frac{11+3}{12}-\left(\frac{1}{2}-\frac{7}{6}\right)
Tā te mea he rite te tauraro o \frac{11}{12} me \frac{3}{12}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{9}{2}-\frac{14}{12}-\left(\frac{1}{2}-\frac{7}{6}\right)
Tāpirihia te 11 ki te 3, ka 14.
\frac{9}{2}-\frac{7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Whakahekea te hautanga \frac{14}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{27}{6}-\frac{7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{9}{2} me \frac{7}{6} ki te hautau me te tautūnga 6.
\frac{27-7}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Tā te mea he rite te tauraro o \frac{27}{6} me \frac{7}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{20}{6}-\left(\frac{1}{2}-\frac{7}{6}\right)
Tangohia te 7 i te 27, ka 20.
\frac{10}{3}-\left(\frac{1}{2}-\frac{7}{6}\right)
Whakahekea te hautanga \frac{20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{10}{3}-\left(\frac{3}{6}-\frac{7}{6}\right)
Ko te maha noa iti rawa atu o 2 me 6 ko 6. Me tahuri \frac{1}{2} me \frac{7}{6} ki te hautau me te tautūnga 6.
\frac{10}{3}-\frac{3-7}{6}
Tā te mea he rite te tauraro o \frac{3}{6} me \frac{7}{6}, me tango rāua mā te tango i ō raua taurunga.
\frac{10}{3}-\frac{-4}{6}
Tangohia te 7 i te 3, ka -4.
\frac{10}{3}-\left(-\frac{2}{3}\right)
Whakahekea te hautanga \frac{-4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{10}{3}+\frac{2}{3}
Ko te tauaro o -\frac{2}{3} ko \frac{2}{3}.
\frac{10+2}{3}
Tā te mea he rite te tauraro o \frac{10}{3} me \frac{2}{3}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{12}{3}
Tāpirihia te 10 ki te 2, ka 12.
4
Whakawehea te 12 ki te 3, kia riro ko 4.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}