Whakaoti mō x
x = \frac{29}{9} = 3\frac{2}{9} \approx 3.222222222
Graph
Tohaina
Kua tāruatia ki te papatopenga
8-3x=\frac{-10}{6}
Whakawehea ngā taha e rua ki te 6.
8-3x=-\frac{5}{3}
Whakahekea te hautanga \frac{-10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
-3x=-\frac{5}{3}-8
Tangohia te 8 mai i ngā taha e rua.
-3x=-\frac{5}{3}-\frac{24}{3}
Me tahuri te 8 ki te hautau \frac{24}{3}.
-3x=\frac{-5-24}{3}
Tā te mea he rite te tauraro o -\frac{5}{3} me \frac{24}{3}, me tango rāua mā te tango i ō raua taurunga.
-3x=-\frac{29}{3}
Tangohia te 24 i te -5, ka -29.
x=\frac{-\frac{29}{3}}{-3}
Whakawehea ngā taha e rua ki te -3.
x=\frac{-29}{3\left(-3\right)}
Tuhia te \frac{-\frac{29}{3}}{-3} hei hautanga kotahi.
x=\frac{-29}{-9}
Whakareatia te 3 ki te -3, ka -9.
x=\frac{29}{9}
Ka taea te hautanga \frac{-29}{-9} te whakamāmā ki te \frac{29}{9} mā te tango tahi i te tohu tōraro i te taurunga me te tauraro.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}