Whakaoti mō x
x=9\sqrt{10}+1\approx 29.460498942
x=1-9\sqrt{10}\approx -27.460498942
Graph
Tohaina
Kua tāruatia ki te papatopenga
810=\left(x-2\times \frac{1}{2}\right)^{2}
Whakareatia te 6 ki te 135, ka 810.
810=\left(x-1\right)^{2}
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
810=x^{2}-2x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=810
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
x^{2}-2x+1-810=0
Tangohia te 810 mai i ngā taha e rua.
x^{2}-2x-809=0
Tangohia te 810 i te 1, ka -809.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-809\right)}}{2}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 1 mō a, -2 mō b, me -809 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-809\right)}}{2}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4+3236}}{2}
Whakareatia -4 ki te -809.
x=\frac{-\left(-2\right)±\sqrt{3240}}{2}
Tāpiri 4 ki te 3236.
x=\frac{-\left(-2\right)±18\sqrt{10}}{2}
Tuhia te pūtakerua o te 3240.
x=\frac{2±18\sqrt{10}}{2}
Ko te tauaro o -2 ko 2.
x=\frac{18\sqrt{10}+2}{2}
Nā, me whakaoti te whārite x=\frac{2±18\sqrt{10}}{2} ina he tāpiri te ±. Tāpiri 2 ki te 18\sqrt{10}.
x=9\sqrt{10}+1
Whakawehe 2+18\sqrt{10} ki te 2.
x=\frac{2-18\sqrt{10}}{2}
Nā, me whakaoti te whārite x=\frac{2±18\sqrt{10}}{2} ina he tango te ±. Tango 18\sqrt{10} mai i 2.
x=1-9\sqrt{10}
Whakawehe 2-18\sqrt{10} ki te 2.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
Kua oti te whārite te whakatau.
810=\left(x-2\times \frac{1}{2}\right)^{2}
Whakareatia te 6 ki te 135, ka 810.
810=\left(x-1\right)^{2}
Whakareatia te 2 ki te \frac{1}{2}, ka 1.
810=x^{2}-2x+1
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(x-1\right)^{2}.
x^{2}-2x+1=810
Whakawhitihia ngā taha kia puta ki te taha mauī ngā kīanga tau taurangi katoa.
\left(x-1\right)^{2}=810
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{810}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=9\sqrt{10} x-1=-9\sqrt{10}
Whakarūnātia.
x=9\sqrt{10}+1 x=1-9\sqrt{10}
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}