Aromātai
\frac{221}{4}=55.25
Tauwehe
\frac{13 \cdot 17}{2 ^ {2}} = 55\frac{1}{4} = 55.25
Tohaina
Kua tāruatia ki te papatopenga
11+8+8+8+9+10+\frac{10}{8}
Tāpirihia te 6 ki te 5, ka 11.
19+8+8+9+10+\frac{10}{8}
Tāpirihia te 11 ki te 8, ka 19.
27+8+9+10+\frac{10}{8}
Tāpirihia te 19 ki te 8, ka 27.
35+9+10+\frac{10}{8}
Tāpirihia te 27 ki te 8, ka 35.
44+10+\frac{10}{8}
Tāpirihia te 35 ki te 9, ka 44.
54+\frac{10}{8}
Tāpirihia te 44 ki te 10, ka 54.
54+\frac{5}{4}
Whakahekea te hautanga \frac{10}{8} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
\frac{216}{4}+\frac{5}{4}
Me tahuri te 54 ki te hautau \frac{216}{4}.
\frac{216+5}{4}
Tā te mea he rite te tauraro o \frac{216}{4} me \frac{5}{4}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{221}{4}
Tāpirihia te 216 ki te 5, ka 221.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}