Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-13 ab=6\times 6=36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6z^{2}+az+bz+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Tātaihia te tapeke mō ia takirua.
a=-9 b=-4
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(6z^{2}-9z\right)+\left(-4z+6\right)
Tuhia anō te 6z^{2}-13z+6 hei \left(6z^{2}-9z\right)+\left(-4z+6\right).
3z\left(2z-3\right)-2\left(2z-3\right)
Tauwehea te 3z i te tuatahi me te -2 i te rōpū tuarua.
\left(2z-3\right)\left(3z-2\right)
Whakatauwehea atu te kīanga pātahi 2z-3 mā te whakamahi i te āhuatanga tātai tohatoha.
6z^{2}-13z+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
z=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 6}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
z=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 6}}{2\times 6}
Pūrua -13.
z=\frac{-\left(-13\right)±\sqrt{169-24\times 6}}{2\times 6}
Whakareatia -4 ki te 6.
z=\frac{-\left(-13\right)±\sqrt{169-144}}{2\times 6}
Whakareatia -24 ki te 6.
z=\frac{-\left(-13\right)±\sqrt{25}}{2\times 6}
Tāpiri 169 ki te -144.
z=\frac{-\left(-13\right)±5}{2\times 6}
Tuhia te pūtakerua o te 25.
z=\frac{13±5}{2\times 6}
Ko te tauaro o -13 ko 13.
z=\frac{13±5}{12}
Whakareatia 2 ki te 6.
z=\frac{18}{12}
Nā, me whakaoti te whārite z=\frac{13±5}{12} ina he tāpiri te ±. Tāpiri 13 ki te 5.
z=\frac{3}{2}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
z=\frac{8}{12}
Nā, me whakaoti te whārite z=\frac{13±5}{12} ina he tango te ±. Tango 5 mai i 13.
z=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6z^{2}-13z+6=6\left(z-\frac{3}{2}\right)\left(z-\frac{2}{3}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te \frac{2}{3} mō te x_{2}.
6z^{2}-13z+6=6\times \frac{2z-3}{2}\left(z-\frac{2}{3}\right)
Tango \frac{3}{2} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6z^{2}-13z+6=6\times \frac{2z-3}{2}\times \frac{3z-2}{3}
Tango \frac{2}{3} mai i z mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6z^{2}-13z+6=6\times \frac{\left(2z-3\right)\left(3z-2\right)}{2\times 3}
Whakareatia \frac{2z-3}{2} ki te \frac{3z-2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6z^{2}-13z+6=6\times \frac{\left(2z-3\right)\left(3z-2\right)}{6}
Whakareatia 2 ki te 3.
6z^{2}-13z+6=\left(2z-3\right)\left(3z-2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.