Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=5 ab=6\left(-4\right)=-24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6y^{2}+ay+by-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,24 -2,12 -3,8 -4,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Tātaihia te tapeke mō ia takirua.
a=-3 b=8
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(6y^{2}-3y\right)+\left(8y-4\right)
Tuhia anō te 6y^{2}+5y-4 hei \left(6y^{2}-3y\right)+\left(8y-4\right).
3y\left(2y-1\right)+4\left(2y-1\right)
Tauwehea te 3y i te tuatahi me te 4 i te rōpū tuarua.
\left(2y-1\right)\left(3y+4\right)
Whakatauwehea atu te kīanga pātahi 2y-1 mā te whakamahi i te āhuatanga tātai tohatoha.
6y^{2}+5y-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 6\left(-4\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-5±\sqrt{25-4\times 6\left(-4\right)}}{2\times 6}
Pūrua 5.
y=\frac{-5±\sqrt{25-24\left(-4\right)}}{2\times 6}
Whakareatia -4 ki te 6.
y=\frac{-5±\sqrt{25+96}}{2\times 6}
Whakareatia -24 ki te -4.
y=\frac{-5±\sqrt{121}}{2\times 6}
Tāpiri 25 ki te 96.
y=\frac{-5±11}{2\times 6}
Tuhia te pūtakerua o te 121.
y=\frac{-5±11}{12}
Whakareatia 2 ki te 6.
y=\frac{6}{12}
Nā, me whakaoti te whārite y=\frac{-5±11}{12} ina he tāpiri te ±. Tāpiri -5 ki te 11.
y=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
y=-\frac{16}{12}
Nā, me whakaoti te whārite y=\frac{-5±11}{12} ina he tango te ±. Tango 11 mai i -5.
y=-\frac{4}{3}
Whakahekea te hautanga \frac{-16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6y^{2}+5y-4=6\left(y-\frac{1}{2}\right)\left(y-\left(-\frac{4}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{2} mō te x_{1} me te -\frac{4}{3} mō te x_{2}.
6y^{2}+5y-4=6\left(y-\frac{1}{2}\right)\left(y+\frac{4}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6y^{2}+5y-4=6\times \frac{2y-1}{2}\left(y+\frac{4}{3}\right)
Tango \frac{1}{2} mai i y mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6y^{2}+5y-4=6\times \frac{2y-1}{2}\times \frac{3y+4}{3}
Tāpiri \frac{4}{3} ki te y mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6y^{2}+5y-4=6\times \frac{\left(2y-1\right)\left(3y+4\right)}{2\times 3}
Whakareatia \frac{2y-1}{2} ki te \frac{3y+4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6y^{2}+5y-4=6\times \frac{\left(2y-1\right)\left(3y+4\right)}{6}
Whakareatia 2 ki te 3.
6y^{2}+5y-4=\left(2y-1\right)\left(3y+4\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.