Whakaoti mō y
y=\frac{-13+\sqrt{1343}i}{12}\approx -1.083333333+3.0539137i
y=\frac{-\sqrt{1343}i-13}{12}\approx -1.083333333-3.0539137i
Tohaina
Kua tāruatia ki te papatopenga
6y^{2}+13y+63=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
y=\frac{-13±\sqrt{13^{2}-4\times 6\times 63}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 13 mō b, me 63 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-13±\sqrt{169-4\times 6\times 63}}{2\times 6}
Pūrua 13.
y=\frac{-13±\sqrt{169-24\times 63}}{2\times 6}
Whakareatia -4 ki te 6.
y=\frac{-13±\sqrt{169-1512}}{2\times 6}
Whakareatia -24 ki te 63.
y=\frac{-13±\sqrt{-1343}}{2\times 6}
Tāpiri 169 ki te -1512.
y=\frac{-13±\sqrt{1343}i}{2\times 6}
Tuhia te pūtakerua o te -1343.
y=\frac{-13±\sqrt{1343}i}{12}
Whakareatia 2 ki te 6.
y=\frac{-13+\sqrt{1343}i}{12}
Nā, me whakaoti te whārite y=\frac{-13±\sqrt{1343}i}{12} ina he tāpiri te ±. Tāpiri -13 ki te i\sqrt{1343}.
y=\frac{-\sqrt{1343}i-13}{12}
Nā, me whakaoti te whārite y=\frac{-13±\sqrt{1343}i}{12} ina he tango te ±. Tango i\sqrt{1343} mai i -13.
y=\frac{-13+\sqrt{1343}i}{12} y=\frac{-\sqrt{1343}i-13}{12}
Kua oti te whārite te whakatau.
6y^{2}+13y+63=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6y^{2}+13y+63-63=-63
Me tango 63 mai i ngā taha e rua o te whārite.
6y^{2}+13y=-63
Mā te tango i te 63 i a ia ake anō ka toe ko te 0.
\frac{6y^{2}+13y}{6}=-\frac{63}{6}
Whakawehea ngā taha e rua ki te 6.
y^{2}+\frac{13}{6}y=-\frac{63}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
y^{2}+\frac{13}{6}y=-\frac{21}{2}
Whakahekea te hautanga \frac{-63}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
y^{2}+\frac{13}{6}y+\left(\frac{13}{12}\right)^{2}=-\frac{21}{2}+\left(\frac{13}{12}\right)^{2}
Whakawehea te \frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{13}{12}. Nā, tāpiria te pūrua o te \frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
y^{2}+\frac{13}{6}y+\frac{169}{144}=-\frac{21}{2}+\frac{169}{144}
Pūruatia \frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
y^{2}+\frac{13}{6}y+\frac{169}{144}=-\frac{1343}{144}
Tāpiri -\frac{21}{2} ki te \frac{169}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(y+\frac{13}{12}\right)^{2}=-\frac{1343}{144}
Tauwehea y^{2}+\frac{13}{6}y+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{13}{12}\right)^{2}}=\sqrt{-\frac{1343}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
y+\frac{13}{12}=\frac{\sqrt{1343}i}{12} y+\frac{13}{12}=-\frac{\sqrt{1343}i}{12}
Whakarūnātia.
y=\frac{-13+\sqrt{1343}i}{12} y=\frac{-\sqrt{1343}i-13}{12}
Me tango \frac{13}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}