Whakaoti mō x
x=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x-10x-40=14+2x
Whakamahia te āhuatanga tohatoha hei whakarea te -5 ki te 2x+8.
-4x-40=14+2x
Pahekotia te 6x me -10x, ka -4x.
-4x-40-2x=14
Tangohia te 2x mai i ngā taha e rua.
-6x-40=14
Pahekotia te -4x me -2x, ka -6x.
-6x=14+40
Me tāpiri te 40 ki ngā taha e rua.
-6x=54
Tāpirihia te 14 ki te 40, ka 54.
x=\frac{54}{-6}
Whakawehea ngā taha e rua ki te -6.
x=-9
Whakawehea te 54 ki te -6, kia riro ko -9.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}