Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

-3x-6y=5
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
6x-3y=10,-3x-6y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
6x-3y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
6x=3y+10
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{6}\left(3y+10\right)
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{2}y+\frac{5}{3}
Whakareatia \frac{1}{6} ki te 3y+10.
-3\left(\frac{1}{2}y+\frac{5}{3}\right)-6y=5
Whakakapia te \frac{y}{2}+\frac{5}{3} mō te x ki tērā atu whārite, -3x-6y=5.
-\frac{3}{2}y-5-6y=5
Whakareatia -3 ki te \frac{y}{2}+\frac{5}{3}.
-\frac{15}{2}y-5=5
Tāpiri -\frac{3y}{2} ki te -6y.
-\frac{15}{2}y=10
Me tāpiri 5 ki ngā taha e rua o te whārite.
y=-\frac{4}{3}
Whakawehea ngā taha e rua o te whārite ki te -\frac{15}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-\frac{4}{3}\right)+\frac{5}{3}
Whakaurua te -\frac{4}{3} mō y ki x=\frac{1}{2}y+\frac{5}{3}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-2+5}{3}
Whakareatia \frac{1}{2} ki te -\frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1
Tāpiri \frac{5}{3} ki te -\frac{2}{3} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=-\frac{4}{3}
Kua oti te pūnaha te whakatau.
-3x-6y=5
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
6x-3y=10,-3x-6y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right))\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-3\\-3&-6\end{matrix}\right))\left(\begin{matrix}10\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{6\left(-6\right)-\left(-3\left(-3\right)\right)}&-\frac{-3}{6\left(-6\right)-\left(-3\left(-3\right)\right)}\\-\frac{-3}{6\left(-6\right)-\left(-3\left(-3\right)\right)}&\frac{6}{6\left(-6\right)-\left(-3\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{15}\\-\frac{1}{15}&-\frac{2}{15}\end{matrix}\right)\left(\begin{matrix}10\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 10-\frac{1}{15}\times 5\\-\frac{1}{15}\times 10-\frac{2}{15}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-\frac{4}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=-\frac{4}{3}
Tangohia ngā huānga poukapa x me y.
-3x-6y=5
Whakaarohia te whārite tuarua. Tangohia te 6y mai i ngā taha e rua.
6x-3y=10,-3x-6y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 6x-3\left(-3\right)y=-3\times 10,6\left(-3\right)x+6\left(-6\right)y=6\times 5
Kia ōrite ai a 6x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 6.
-18x+9y=-30,-18x-36y=30
Whakarūnātia.
-18x+18x+9y+36y=-30-30
Me tango -18x-36y=30 mai i -18x+9y=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
9y+36y=-30-30
Tāpiri -18x ki te 18x. Ka whakakore atu ngā kupu -18x me 18x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
45y=-30-30
Tāpiri 9y ki te 36y.
45y=-60
Tāpiri -30 ki te -30.
y=-\frac{4}{3}
Whakawehea ngā taha e rua ki te 45.
-3x-6\left(-\frac{4}{3}\right)=5
Whakaurua te -\frac{4}{3} mō y ki -3x-6y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+8=5
Whakareatia -6 ki te -\frac{4}{3}.
-3x=-3
Me tango 8 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te -3.
x=1,y=-\frac{4}{3}
Kua oti te pūnaha te whakatau.