Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(2x-x^{2}\right)
Tauwehea te 3.
x\left(2-x\right)
Whakaarohia te 2x-x^{2}. Tauwehea te x.
3x\left(-x+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
-3x^{2}+6x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-6±\sqrt{6^{2}}}{2\left(-3\right)}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-6±6}{2\left(-3\right)}
Tuhia te pūtakerua o te 6^{2}.
x=\frac{-6±6}{-6}
Whakareatia 2 ki te -3.
x=\frac{0}{-6}
Nā, me whakaoti te whārite x=\frac{-6±6}{-6} ina he tāpiri te ±. Tāpiri -6 ki te 6.
x=0
Whakawehe 0 ki te -6.
x=-\frac{12}{-6}
Nā, me whakaoti te whārite x=\frac{-6±6}{-6} ina he tango te ±. Tango 6 mai i -6.
x=2
Whakawehe -12 ki te -6.
-3x^{2}+6x=-3x\left(x-2\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te 2 mō te x_{2}.