Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-x-5=0
Kia whakaotia te koreōrite, me tauwehe te taha mauī. Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 6\left(-5\right)}}{2\times 6}
Ka taea ngā whārite katoa o te momo ax^{2}+bx+c=0 te whakaoti mā te ture pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Whakakapia te 6 mō te a, te -1 mō te b, me te -5 mō te c i te ture pūrua.
x=\frac{1±11}{12}
Mahia ngā tātaitai.
x=1 x=-\frac{5}{6}
Whakaotia te whārite x=\frac{1±11}{12} ina he tōrunga te ±, ina he tōraro te ±.
6\left(x-1\right)\left(x+\frac{5}{6}\right)<0
Tuhia anō te koreōrite mā te whakamahi i ngā otinga i whiwhi.
x-1>0 x+\frac{5}{6}<0
Kia tōraro te otinga, me tauaro rawa ngā tohu o te x-1 me te x+\frac{5}{6}. Whakaarohia te tauira ina he tōrunga te x-1 he tōraro te x+\frac{5}{6}.
x\in \emptyset
He teka tēnei mō tētahi x ahakoa.
x+\frac{5}{6}>0 x-1<0
Whakaarohia te tauira ina he tōrunga te x+\frac{5}{6} he tōraro te x-1.
x\in \left(-\frac{5}{6},1\right)
Te otinga e whakaea i ngā koreōrite e rua ko x\in \left(-\frac{5}{6},1\right).
x\in \left(-\frac{5}{6},1\right)
Ko te otinga whakamutunga ko te whakakotahi i ngā otinga kua whiwhi.