Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=6\left(-40\right)=-240
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx-40. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-240 2,-120 3,-80 4,-60 5,-48 6,-40 8,-30 10,-24 12,-20 15,-16
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -240.
1-240=-239 2-120=-118 3-80=-77 4-60=-56 5-48=-43 6-40=-34 8-30=-22 10-24=-14 12-20=-8 15-16=-1
Tātaihia te tapeke mō ia takirua.
a=-16 b=15
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(6x^{2}-16x\right)+\left(15x-40\right)
Tuhia anō te 6x^{2}-x-40 hei \left(6x^{2}-16x\right)+\left(15x-40\right).
2x\left(3x-8\right)+5\left(3x-8\right)
Tauwehea te 2x i te tuatahi me te 5 i te rōpū tuarua.
\left(3x-8\right)\left(2x+5\right)
Whakatauwehea atu te kīanga pātahi 3x-8 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-x-40=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-40\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-40\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-1\right)±\sqrt{1+960}}{2\times 6}
Whakareatia -24 ki te -40.
x=\frac{-\left(-1\right)±\sqrt{961}}{2\times 6}
Tāpiri 1 ki te 960.
x=\frac{-\left(-1\right)±31}{2\times 6}
Tuhia te pūtakerua o te 961.
x=\frac{1±31}{2\times 6}
Ko te tauaro o -1 ko 1.
x=\frac{1±31}{12}
Whakareatia 2 ki te 6.
x=\frac{32}{12}
Nā, me whakaoti te whārite x=\frac{1±31}{12} ina he tāpiri te ±. Tāpiri 1 ki te 31.
x=\frac{8}{3}
Whakahekea te hautanga \frac{32}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{30}{12}
Nā, me whakaoti te whārite x=\frac{1±31}{12} ina he tango te ±. Tango 31 mai i 1.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}-x-40=6\left(x-\frac{8}{3}\right)\left(x-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{8}{3} mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
6x^{2}-x-40=6\left(x-\frac{8}{3}\right)\left(x+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}-x-40=6\times \frac{3x-8}{3}\left(x+\frac{5}{2}\right)
Tango \frac{8}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-x-40=6\times \frac{3x-8}{3}\times \frac{2x+5}{2}
Tāpiri \frac{5}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-x-40=6\times \frac{\left(3x-8\right)\left(2x+5\right)}{3\times 2}
Whakareatia \frac{3x-8}{3} ki te \frac{2x+5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-x-40=6\times \frac{\left(3x-8\right)\left(2x+5\right)}{6}
Whakareatia 3 ki te 2.
6x^{2}-x-40=\left(3x-8\right)\left(2x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.