Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-1 ab=6\left(-2\right)=-12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-4 b=3
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(6x^{2}-4x\right)+\left(3x-2\right)
Tuhia anō te 6x^{2}-x-2 hei \left(6x^{2}-4x\right)+\left(3x-2\right).
2x\left(3x-2\right)+3x-2
Whakatauwehea atu 2x i te 6x^{2}-4x.
\left(3x-2\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te 2x+1=0.
6x^{2}-x-2=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -1 mō b, me -2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 6}
Whakareatia -24 ki te -2.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 6}
Tāpiri 1 ki te 48.
x=\frac{-\left(-1\right)±7}{2\times 6}
Tuhia te pūtakerua o te 49.
x=\frac{1±7}{2\times 6}
Ko te tauaro o -1 ko 1.
x=\frac{1±7}{12}
Whakareatia 2 ki te 6.
x=\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{1±7}{12} ina he tāpiri te ±. Tāpiri 1 ki te 7.
x=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{1±7}{12} ina he tango te ±. Tango 7 mai i 1.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{2}{3} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
6x^{2}-x-2=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-x-2-\left(-2\right)=-\left(-2\right)
Me tāpiri 2 ki ngā taha e rua o te whārite.
6x^{2}-x=-\left(-2\right)
Mā te tango i te -2 i a ia ake anō ka toe ko te 0.
6x^{2}-x=2
Tango -2 mai i 0.
\frac{6x^{2}-x}{6}=\frac{2}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{1}{6}x=\frac{2}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{6}x=\frac{1}{3}
Whakahekea te hautanga \frac{2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{1}{3}+\left(-\frac{1}{12}\right)^{2}
Whakawehea te -\frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{12}. Nā, tāpiria te pūrua o te -\frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{1}{3}+\frac{1}{144}
Pūruatia -\frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{49}{144}
Tāpiri \frac{1}{3} ki te \frac{1}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{12}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}-\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{12}=\frac{7}{12} x-\frac{1}{12}=-\frac{7}{12}
Whakarūnātia.
x=\frac{2}{3} x=-\frac{1}{2}
Me tāpiri \frac{1}{12} ki ngā taha e rua o te whārite.