Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-x-15=0
Tangohia te 15 mai i ngā taha e rua.
a+b=-1 ab=6\left(-15\right)=-90
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-90 2,-45 3,-30 5,-18 6,-15 9,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -90.
1-90=-89 2-45=-43 3-30=-27 5-18=-13 6-15=-9 9-10=-1
Tātaihia te tapeke mō ia takirua.
a=-10 b=9
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(6x^{2}-10x\right)+\left(9x-15\right)
Tuhia anō te 6x^{2}-x-15 hei \left(6x^{2}-10x\right)+\left(9x-15\right).
2x\left(3x-5\right)+3\left(3x-5\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x-5\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 3x-5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{5}{3} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 3x-5=0 me te 2x+3=0.
6x^{2}-x=15
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
6x^{2}-x-15=15-15
Me tango 15 mai i ngā taha e rua o te whārite.
6x^{2}-x-15=0
Mā te tango i te 15 i a ia ake anō ka toe ko te 0.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-15\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -1 mō b, me -15 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-15\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-1\right)±\sqrt{1+360}}{2\times 6}
Whakareatia -24 ki te -15.
x=\frac{-\left(-1\right)±\sqrt{361}}{2\times 6}
Tāpiri 1 ki te 360.
x=\frac{-\left(-1\right)±19}{2\times 6}
Tuhia te pūtakerua o te 361.
x=\frac{1±19}{2\times 6}
Ko te tauaro o -1 ko 1.
x=\frac{1±19}{12}
Whakareatia 2 ki te 6.
x=\frac{20}{12}
Nā, me whakaoti te whārite x=\frac{1±19}{12} ina he tāpiri te ±. Tāpiri 1 ki te 19.
x=\frac{5}{3}
Whakahekea te hautanga \frac{20}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{1±19}{12} ina he tango te ±. Tango 19 mai i 1.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{5}{3} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
6x^{2}-x=15
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{6x^{2}-x}{6}=\frac{15}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{1}{6}x=\frac{15}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{6}x=\frac{5}{2}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{5}{2}+\left(-\frac{1}{12}\right)^{2}
Whakawehea te -\frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{12}. Nā, tāpiria te pūrua o te -\frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{5}{2}+\frac{1}{144}
Pūruatia -\frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{361}{144}
Tāpiri \frac{5}{2} ki te \frac{1}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{12}\right)^{2}=\frac{361}{144}
Tauwehea x^{2}-\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{361}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{12}=\frac{19}{12} x-\frac{1}{12}=-\frac{19}{12}
Whakarūnātia.
x=\frac{5}{3} x=-\frac{3}{2}
Me tāpiri \frac{1}{12} ki ngā taha e rua o te whārite.